[1] WHO. Global Strategy on Diet, Physical Activity and Health L. 2004. 05 http://www.who.int/dietphysicalactivity/en/. [2017-05-25]
[2] Bauman A, Merom D, Bull FC, et al. Updating the Evidence for Physical Activity: Summative Reviews of the Epidemiological Evidence, Prevalence, and Interventions to Promote 'Active Aging'. Gerontologist, 2016, 56, S268-80. doi:  10.1093/geront/gnw031
[3] Cook I, Alberts M, Lambert EV. Relationship between adiposity and pedometer-assessed ambulatory activity in adult, rural African women. Int J Obes, 2008, 32; 1327-30. doi:  10.1038/ijo.2008.26
[4] Warburton DE, Charlesworth S, Ivey A, et al. A systematic review of the evidence for Canada's Physical Activity Guidelines for Adults. Int J Behav Nutr Phys Act, 2010, 7, 39. doi:  10.1186/1479-5868-7-39
[5] WHO. Prevalence of insufficient physical activity. 2010 http://www.who.int/gho/ncd/risk_factors/physical_activity/en/. [2017-05-25]
[6] UNION I T. ICT facts and figures 2016. 2016 http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2016.pdf. [2017-05-25]
[7] Sallis JF, Saelens BE. Assessment of physical activity by self-report: status, limitations, and future directions. Res Q Exerc Sport, 2000, 71, S1-14. https://www.ncbi.nlm.nih.gov/pubmed/?term=Assessment+of+physical+activity+by+self-report%3A+status%2C+limitations%2C+and+future+directions.
[8] Riddoch CJ, Mattocks C, Deere K, et al. Objective measurement of levels and patterns of physical activity. Arch Dis Child, 2007, 92:963-9. doi:  10.1136/adc.2006.112136
[9] Bergouignan A, Momken I, Lefai E, et al. Activity energy expenditure is a major determinant of dietary fat oxidation and trafficking, but the deleterious effect of detraining is more marked than the beneficial effect of training at current recommendations. Am J Clin Nutr, 2013, 98:648-58. doi:  10.3945/ajcn.112.057075
[10] Mensah K, Maire A, Oppert JM, et al. Assessment of sedentary behaviors and transport-related activities by questionnaire: a validation study. BMC Public Health, 2016, 16, 753. doi:  10.1186/s12889-016-3412-3
[11] Chen KY, Janz KF, Zhu W, et al. Redefining the roles of sensors in objective physical activity monitoring. Med Sci Sports Exerc, 2012, 44, S13-23. doi:  10.1249/MSS.0b013e3182399bc8
[12] Keytel LR, Goedecke JH, Noakes TD, et al. Prediction of energy expenditure from heart rate monitoring during submaximal exercise. J Sports Sci, 2005, 23:289-97. doi:  10.1080/02640410470001730089
[13] Westerterp KR. Assessment of physical activity: a critical appraisal. Eur J Appl Physiol, 2009, 105: 823-8. http://cat.inist.fr/?aModele=afficheN&cpsidt=21266848
[14] Husted HM, Llewellyn TL. The Accuracy of Pedometers in Measuring Walking Steps on a Treadmill in College Students. Int J Exerc Sci, 2017, 10:146-53. http://digitalcommons.wku.edu/cgi/viewcontent.cgi?article=1904&context=ijes
[15] Kelly P, Fitzsimons C, Baker G. Should we reframe how we think about physical activity and sedentary behaviour measurement? Validity and reliability reconsidered. Int J Behav Nutr Phys Act, 2016, 13, 32. doi:  10.1186/s12966-016-0351-4
[16] Slootmaker SM, Schuit AJ, Chinapaw MJM, et al. Disagreement in physical activity assessed by accelerometer and self-report in subgroups of age, gender, education and weight status. Int J Beha Nutr Phys Act, 2009, 6, 17. doi:  10.1186/1479-5868-6-17
[17] Case MA, Burwick HA, Volpp KG, et al. Accuracy of smartphone applications and wearable devices for tracking physical activity data. JAMA, 2015, 313:625-6. doi:  10.1001/jama.2014.17841
[18] Colpani V, Spritzer PM, Lodi AP, et al. Physical activity in climacteric women: comparison between self-reporting and pedometer. Rev Saúde Pública, 2014, 48:258-65. doi:  10.1590/S0034-8910.2014048004765
[19] Sweet SN, Fortier MS. Improving Physical Activity and Dietary Behaviours with Single or Multiple Health Behaviour Interventions? A Synthesis of Meta-Analyses and Reviews. Int J Environ Res Public Health, 2010, 7:1720-43. doi:  10.3390/ijerph7041720
[20] King AC, Haskell WL, Taylor CB, et al. Group-vs. home-based exercise training in healthy older men and women. JAMA, 1991, 266:1535-42. doi:  10.1001/jama.1991.03470110081037
[21] Noell J, Glasgow RE. Interactive technology applications for behavioral counseling1: Issues and opportunities for health care settings. Am J Prev Med, 1999, 17:269-74. doi:  10.1016/S0749-3797(99)00093-8
[22] Patrick K. Information technology and the future of preventive medicine. Am J Prev Med, 2000, 19:132-5. doi:  10.1016/S0749-3797(00)00189-6
[23] Marcus B, Owen N, Forsyth L, et al. Physical activity interventions using mass media, print media, and information technology. Am J Prev Med, 1998, 15:362-78. doi:  10.1016/S0749-3797(98)00079-8
[24] Writing Group for the Activity Counseling Trial Research Group. Effects of physical activity counseling in primary care: The activity counseling trial: a randomized controlled trial. JAMA, 2001, 286:677-87. doi:  10.1001/jama.286.6.677
[25] Marcus BH, Lewis BA, Williams DM, et al. Step into Motion: A randomized trial examining the relative efficacy of Internet vs. print-based physical activity interventions. Contemp Clin Trials, 2007, 28:737-47. doi:  10.1016/j.cct.2007.04.003
[26] Cushing CC, Steele RG. A Meta-Analytic Review of eHealth Interventions for Pediatric Health Promoting and Maintaining Behaviors. J Pediatr Psychol, 2010, 35:937-49. doi:  10.1093/jpepsy/jsq023
[27] Vandelanotte C, M LLER A M, SHORT C E, et al. Past, Present, and Future of eHealth and mHealth Research to Improve Physical Activity and Dietary Behaviors. J Nutr Educ Behav, 2016, 48:219-28, e1. doi:  10.1016/j.jneb.2015.12.006
[28] Rehman H, Kamal AK, Sayani S, et al. Using Mobile Health (mHealth) Technology in the Management of Diabetes Mellitus, Physical Inactivity, and Smoking. Curr Atheroscler Rep, 2017, 19, 16. doi:  10.1007/s11883-017-0650-5
[29] Davies CA, Spence JC, Vandelanotte C, et al. Meta-analysis of internet-delivered interventions to increase physical activity levels. Int J Behav Nutr PhysAct, 2012, 9, 52. doi:  10.1186/1479-5868-9-52
[30] Webb TL, Joseph J, Yardley L, et al. Using the Internet to Promote Health Behavior Change: A Systematic Review and Meta-analysis of the Impact of Theoretical Basis, Use of Behavior Change Techniques, and Mode of Delivery on Efficacy. J Med Internet Res, 2010, 12, e4. doi:  10.2196/jmir.1376
[31] Conn VS, Hafdahl AR, Mehr DR. Interventions to Increase Physical Activity among Healthy Adults: Meta-Analysis of Outcomes. Am j Public Health, 2011, 101:751-8. doi:  10.2105/AJPH.2010.194381
[32] Brouwer W, Kroeze W, Crutzen R, et al. Which Intervention Characteristics are Related to More Exposure to Internet-Delivered Healthy Lifestyle Promotion Interventions? A Systematic Review. J Med Internet Res, 2011, 13, e2. doi:  10.2196/jmir.1639
[33] S. FOX M D. Pew Research Center's Internet & American Life Project, Washington DC. Mobile health 2012. https://www.benton.org/taxonomy/term/2126
[34] Bender JL, Yue RY, To MJ, et al. A Lot of Action, But Not in the Right Direction: Systematic Review and Content Analysis of Smartphone Applications for the Prevention, Detection, and Management of Cancer. J Med Internet Res, 2013, 15, e287. doi:  10.2196/jmir.2661
[35] Conroy DE, Yang CH, Maher JP. Behavior Change Techniques in Top-Ranked Mobile Apps for Physical Activity. Am J Prev Med, 2014, 46:649-52. doi:  10.1016/j.amepre.2014.01.010
[36] Coughlin SS, Whitehead M, Sheats JQ, et al. A Review of Smartphone Applications for Promoting Physical Activity. Jacobs J Community Med, 2016, 2, 021. http://www.ncbi.nlm.nih.gov/pmc/articles/pmid/27034992/
[37] Bort-Roig J, Gilson ND, Puig-Ribera A, et al. Measuring and Influencing Physical Activity with Smartphone Technology: A Systematic Review. Sports Med, 2014, 44:671-86. doi:  10.1007/s40279-014-0142-5
[38] Middelweerd A, van der Laan DM, van Stralen MM, et al. What features do Dutch university students prefer in a smartphone application for promotion of physical activity? A qualitative approach. Int J Behav Nutr Phys Act, 2015, 12, 31. doi:  10.1186/s12966-015-0189-1
[39] Glynn LG, Hayes PS, Casey M, et al. Effectiveness of a smartphone application to promote physical activity in primary care: the SMART MOVE randomised controlled trial. Br J Gen Pract, 2014, 64, e384-e91. doi:  10.3399/bjgp14X680461
[40] Kirwan M, Duncan MJ, Vandelanotte C, et al. Using Smartphone Technology to Monitor Physical Activity in the 10, 000 Steps Program: A Matched Case–Control Trial. J Med Internet Res, 2012, 14, e55. doi:  10.2196/jmir.1950
[41] Ehlers DK, Huberty JL. Middle-Aged Women's Preferred Theory-Based Features in Mobile Physical Activity Applications. J Phys Act Health, 2014, 11:1379-85. doi:  10.1123/jpah.2012-0435
[42] Rabin C, Bock B. Desired Features of Smartphone Applications Promoting Physical Activity. Telemed J E Health, 2011, 17:801-3. doi:  10.1089/tmj.2011.0055
[43] King AC, Hekler EB, Castro CM, et al. Exercise advice by humans versus computers: Maintenance effects at 18 months. Health Psychol, 2014, 33:192-6. doi:  10.1037/a0030646
[44] Lyons EJ, Lewis ZH, Mayrsohn BG, et al. Behavior Change Techniques Implemented in Electronic Lifestyle Activity Monitors: A Systematic Content Analysis. J Med Internet Res, 2014, 16, e192. doi:  10.2196/jmir.3469
[45] Webb RC, Bonifas AP, Behnaz A, et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat Mater, 2013, 12:938-44. doi:  10.1038/nmat3755
[46] Trung TQ, Lee NE. Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Human-Activity Monitoringand Personal Healthcare. Adv Mater, 2016, 28:4338-72. doi:  10.1002/adma.v28.22
[47] Pasinetti GM, Ksiezak-Reding H, Santa-Maria I, et al. Development of a grape seed polyphenolic extract with anti-oligomeric activity as a novel treatment in progressive supranuclear palsy and other tauopathies. J Neurochem, 2010, 114:1557-68. doi:  10.1111/j.1471-4159.2010.06875.x
[48] Crowley O, Pugliese L, Kachnowski S. The Impact of Wearable Device Enabled Health Initiative on Physical Activity and Sleep. Cureus, 2016, 8, e825. http://assets.cureus.com/uploads/original_article/pdf/4832/1476193389-20161011-5148-1bjv12s.pdf
[49] Bravata DM, Smith-Spangler C, Sundaram V, et al. Using pedometers to increase physical activity and improve health: A systematic review. JAMA, 2007, 298:2296-304. doi:  10.1001/jama.298.19.2296
[50] Pekmezi D, Dunsiger S, Gaskins R, et al. Feasibility and acceptability of using pedometers as an intervention tool for Latin. J Phys Act Health, 2013, 10:451-7. doi:  10.1123/jpah.10.3.451
[51] Mendoza L, Horta P, Espinoza J, et al. Pedometers to enhance physical activity in COPD: a randomised controlled trial. Eur Respir J, 2015, 45:347-54. doi:  10.1183/09031936.00084514
[52] Whitney R, Bhan H, Persadie N, et al. Feasibility of Pedometer Use to Assess Physical Activity and Its Relationship With Quality of Life in Children With Epilepsy: A Pilot Study. Pediatr Neurol, 2013, 49:370-3. doi:  10.1016/j.pediatrneurol.2013.06.002
[53] Rollo ME, Aguiar EJ, Williams RL, et al. eHealth technologies to support nutrition and physical activity behaviors in diabetes self-management. Diabetes Metab Syndr Obes, 2016, 9:381-90. doi:  10.2147/DMSO
[54] Doherty AR, Kelly P, Kerr J, et al. Using wearable cameras to categorise type and context of accelerometer-identified episodes of physical activity. Int J Behav Nutr Phys Act, 2013, 10, 22. doi:  10.1186/1479-5868-10-22
[55] Årsand E, Muzny M, Bradway M, et al. Performance of the First Combined Smartwatch and Smartphone Diabetes Diary Application Study. J Diabetes Sci Technol, 2015, 9:556-63. doi:  10.1177/1932296814567708
[56] Deutsch JE, Myslinski MJ, Kafri M, et al. Feasibility of Virtual Reality Augmented Cycling for Health Promotion of People Post-Stroke. J Neurol Phys Ther, 2013, 37:118-24. doi:  10.1097/NPT.0b013e3182a0a078
[57] Lin CY, Chang YM. Interactive augmented reality using Scratch 2.0 to improve physical activities for children with developmental disabilities. Res Dev Disabil, 2015, 37:1-8. doi:  10.1016/j.ridd.2014.10.016
[58] Miller KJ, Adair BS, Pearce AJ, et al. Effectiveness and feasibility of virtual reality and gaming system use at home by older adults for enabling physical activity to improve health-related domains: a systematic review. Age Ageing, 2014, 43:188-95. doi:  10.1093/ageing/aft194
[59] Hakala S, Rintala A, Immonen J, et al. Effectiveness of technology-based distance interventions promoting physical activity: Systematic review, meta-analysis and meta-regression. Eur J Phys Rehabil Med, 2017, 49:97-105. doi:  10.2340/16501977-2195
[60] Bravata DM, Smith-Spangler C, Sundaram V, et al. Using pedometers to increase physical activity and improve health: a systematic review. JAMA, 2007, 298:2296-304. doi:  10.1001/jama.298.19.2296
[61] Coughlin SS, Whitehead M, Sheats JQ, et al. Smartphone Applications for Promoting Healthy Diet and Nutrition: A Literature Review. Jacobs J Food Nutr, 2015, 2, 021. http://europepmc.org/abstract/MED/26819969
[62] Flores Mateo G, Granado-Font E. Mobile Phone Apps to Promote Weight Loss and Increase Physical Activity: A Systematic Review and Meta-Analysis. J Med Internet Res, 2015, 17, e253. doi:  10.2196/jmir.4836
[63] Richards J, Thorogood M, Hillsdon M, et al. Face-to-face versus remote and web 2. 0 interventions for promoting physical activity. Cochrane Database Syst Rev, 2013, 30, CD010393. http://www.cochrane.org/CD010393/VASC_face-to-face-versus-remote-and-web-2.0-interventions-for-promoting-physical-activity