[1] Formenti SC, Lymberis SC, Dewyngaert JK. Ischemic heart disease after breast cancer radiotherapy. N Engl J Med, 2013; 368, 2525. http://d.old.wanfangdata.com.cn/Periodical/zgyszz201310014
[2] Shimizu Y, Kodama K, Nishi N, et al. Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950-2003. BMJ, 2010; 340, b5349. doi:  10.1136/bmj.b5349
[3] Korpela E, Liu SK. Endothelial perturbations and therapeutic strategies in normal tissue radiation damage. Radiat Oncol, 2014; 9, 1-9. doi:  10.1186/1748-717X-9-1
[4] Corre I, Guillonneau M, Paris F. Membrane signaling induced by high doses of ionizing radiation in the endothelial compartment. Relevance in radiation toxicity. Int J Mol Sci, 2013; 14, 22678-96. doi:  10.3390/ijms141122678
[5] Venkatesulu BP, Mahadevan LS, Aliru ML, et al. Radiation-Induced Endothelial Vascular Injury: A Review of Possible Mechanisms. JACC Basic Transl Sci, 2018; 3, 563-72. doi:  10.1016/j.jacbts.2018.01.014
[6] Liu YG, Chen JK, Zhang ZT, et al. NLRP3 inflammasome activation mediates radiation-induced pyroptosis in bone marrow-derived macrophages. Cell Death Dis, 2017; 8, e2579. doi:  10.1038/cddis.2016.460
[7] Liao H, Wang H, Rong X, et al. Mesenchymal stem cells attenuate radiation-induced brain injury by inhibiting microglia pyroptosis. Biomed Res Int, 2017; 2017, 1948985. http://europepmc.org/articles/PMC6020670/
[8] Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell death and inflammation. Nat Rev Microbiol, 2009; 7, 99-109. doi:  10.1038/nrmicro2070
[9] Shi J, Gao W, Shao F. Pyroptosis: Gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci, 2017; 42, 245-54. doi:  10.1016/j.tibs.2016.10.004
[10] Xi H, Zhang Y, Xu Y, et al. Caspase-1 inflammasome activation mediates homocysteine-induced pyrop-apoptosis in endothelial cells. Circ Res, 2016; 118, 1525-39. doi:  10.1161/CIRCRESAHA.116.308501
[11] Abe J, Morrell C. Pyroptosis as a regulated form of necrosis: PI+/Annexin V-/High Caspase 1/Low Caspase 9 activity in cells = pyroptosis? Circ Res, 2016; 118, 1457-60. doi:  10.1161/CIRCRESAHA.116.308699
[12] Miao EA, Leaf IA, Treuting PM, et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol, 2010; 11, 1136-42. doi:  10.1038/ni.1960
[13] Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell, 2014; 157, 1013-22. doi:  10.1016/j.cell.2014.04.007
[14] Schroder K, Tschopp J. The inflammasomes. Cell, 2010; 140, 821-32. doi:  10.1016/j.cell.2010.01.040
[15] Franklin BS, Bossaller L, De Nardo D, et al. The adaptor ASC has extracellular and ['p]ionoid' activities that propagate inflammation. Nat Immunol, 2014; 15, 727-37. doi:  10.1038/ni.2913
[16] Baroja-Mazo A, Martín-Sánchez F, Gomez AI, et al. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat Immunol, 2014; 15, 738. doi:  10.1038/ni.2919
[17] Skerrett IM, Williams JB. A structural and functional comparison of gap junction channels composed of connexins and innexins. Dev Neurobiol, 2017; 77, 522-47. doi:  10.1002/dneu.v77.5
[18] Dempsie Y, Martin P, Upton PD. Connexin-mediated regulation of the pulmonary vasculature. Biochem Soc Trans, 2015; 43, 524-9. doi:  10.1042/BST20150030
[19] Zhang J, O'Carroll SJ, Henare K, et al. Connexin hemichannel induced vascular leak suggests a new paradigm for cancer therapy. FEBS Lett, 2014; 588, 1365-71. doi:  10.1016/j.febslet.2014.02.003
[20] De Bock M, Wang N, Decrock E, et al. Intracellular cleavage of the Cx43 c-terminal domain by matrix-metalloproteases: A novel contributor to inflammation? Mediat Inflamm, 2015; 2015, 1-18. http://europepmc.org/abstract/MED/26424967
[21] Taylor KA, Wright JR, Mahaut-Smith MP. Regulation of pannexin-1 channel activity. Biochem Soc Trans, 2015; 43, 502-7. doi:  10.1042/BST20150042
[22] Thi MM, Islam S, Suadicani SO, et al. Connexin43 and pannexin-1 channels in osteoblasts: who is the "hemichannel"? J Membr Biol, 2012; 245, 401-9. doi:  10.1007/s00232-012-9462-2
[23] Li S, Tomic M, Stojilkovic SS. Characterization of novel pannexin 1 isoforms from rat pituitary cells and their association with ATP-gated P2X channels. Gen Comp Endocrinol, 2011; 174, 202-10. doi:  10.1016/j.ygcen.2011.08.019
[24] Pelegrin P, Surprenant A. Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J, 2006; 25, 5071-82. doi:  10.1038/sj.emboj.7601378
[25] Rafii S, Ginsberg M, Scandura J, et al. Transplantation of Endothelial Cells to Mitigate Acute and Chronic Radiation Injury to Vital Organs. Radiat Res, 2016; 186, 196-202. doi:  10.1667/RR14461.1
[26] Slezak J, Kura B, Ravingerova T, et al. Mechanisms of cardiac radiation injury and potential preventive approaches. Can J Physiol Pharmacol, 2015; 93, 737-53. doi:  10.1139/cjpp-2015-0006
[27] Wu D, Han R, Deng S, et al. Protective effects of flagellin A N/C against radiation-induced NLR Pyrin domain containing 3 inflammasome-dependent pyroptosis in Intestinal Cells. Int J Radiat Oncol Biol Phys, 2018; 101, 107-17. doi:  10.1016/j.ijrobp.2018.01.035
[28] Han R, Wu D, Deng S, et al. NLRP3 inflammasome induces pyroptosis in lung tissues of radiation-induced lung injury in mice. Chinese J Cel & Mol Immunol, 2017; 33, 1206-11. (In Chinese) http://d.old.wanfangdata.com.cn/Periodical/xbyfzmyxzz201709011
[29] Pecoraro M, Pinto A, Popolo A. Inhibition of connexin 43 translocation on mitochondria accelerates CoCl2-induced apoptotic response in a chemical model of hypoxia. Toxicol In Vitro, 2018; 47, 120-8. doi:  10.1016/j.tiv.2017.11.004
[30] Du ZJ, Cui GQ, Zhang J, et al. Inhibition of gap junction intercellular communication is involved in silica nanoparticles-induced H9c2 cardiomyocytes apoptosis via the mitochondrial pathway. Int J Nanomedicine, 2017; 12, 2179-88. doi:  10.2147/IJN
[31] Ghosh S, Kumar A, Chandna S. Connexin-43 downregulation in G2/M phase enriched tumour cells causes extensive low-dose hyper-radiosensitivity (HRS) associated with mitochondrial apoptotic events. Cancer lett, 2015; 363, 46-59. doi:  10.1016/j.canlet.2015.03.046
[32] Mathur A, Kumar A, Babu B, et al. In vitro mesenchymal-epithelial transition in NIH3T3 fibroblasts results in onset of low-dose radiation hypersensitivity coupled with attenuated connexin-43 response. Biochim Biophys Acta Gen Sub, 2018; 1862, 414-26. doi:  10.1016/j.bbagen.2017.11.013
[33] Autsavapromporn N, de Toledo SM, Little JB, et al. The role of gap junction communication and oxidative stress in the propagation of toxic effects among high-dose alpha-particle- irradiated human cells. Radiat Res, 2011; 175, 347-57. doi:  10.1667/RR2372.1
[34] Azzam EI, de Toledo SM, Little JB. Expression of connexin43 is highly sensitive to ionizing radiation and other environmental stresses. Cancer Res, 2003; 63, 7128-35. http://www.ncbi.nlm.nih.gov/pubmed/14612506
[35] Autsavapromporn N, De Toledo SM, Jay-Gerin JP, et al. Human cell responses to ionizing radiation are differentially affected by the expressed connexins. J Radiat Res, 2013; 54, 251-9. doi:  10.1093/jrr/rrs099
[36] Lampe PD, Tenbroek EM, Burt BJM, et al. Phosphorylation of connexin43 on serine368 by protein kinase C regulates gap junctional communication. J Cell Biol, 2000; 149, 1503-12. doi:  10.1083/jcb.149.7.1503
[37] Decrock E, Hoorelbeke D, Ramadan R, et al. Calcium, oxidative stress and connexin channels, a harmonious orchestra directing the response to radiotherapy treatment? Biochim Biophys Acta Mol Cell Res, 2017; 1864, 1099-120. doi:  10.1016/j.bbamcr.2017.02.007
[38] Li C, Meng Q, Yu X, et al. Regulatory effect of connexin 43 on basal Ca2+ signaling in rat ventricular myocytes. PLoS One, 2012; 7, e36165. doi:  10.1371/journal.pone.0036165
[39] Lee GS, Subramanian N, Kim AI, et al. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature, 2012; 492, 123-7. doi:  10.1038/nature11588
[40] Chang YY, Kao MC, Lin JA, et al. Effects of MgSO4 on inhibiting Nod-like receptor protein 3 inflammasome involve decreasing intracellular calcium. J Surg Res, 2018; 221, 257-65. doi:  10.1016/j.jss.2017.09.005
[41] Gong T, Yang Y, Jin T, et al. Orchestration of NLRP3 Inflammasome Activation by Ion Fluxes. Trends Immunol, 2018; 39, 393-406. doi:  10.1016/j.it.2018.01.009
[42] Crespo YS, Willebrords J, Johnstone SR, et al. Pannexin1 as mediator of inflammation and cell death. Biochim Biophys Acta Mol Cell Res, 2017; 1864, 51-61. doi:  10.1016/j.bbamcr.2016.10.006
[43] Draganov D, Gopalakrishnapillai S, Chen YR, et al. Modulation of P2X4/P2X7/Pannexin-1 sensitivity to extracellular ATP via Ivermectin induces a non-apoptotic and inflammatory form of cancer cell death. Sci Rep, 2015; 5, 16222. doi:  10.1038/srep16222
[44] deGassart A, Martinon F. Pyroptosis: Caspase-11? Unlocks the gates of death. Immunity, 2015; 43, 835-7. doi:  10.1016/j.immuni.2015.10.024
[45] Qu Y, Misaghi S, Newton K, et al. Pannexin-1 is required for ATP release during apoptosis but not for inflammasome activation. J Immunol, 2011; 186, 6553-61. doi:  10.4049/jimmunol.1100478
[46] Richter K, Kiefer KP, Grzesik BA, et al. Hydrostatic pressure activates ATP-sensitive K+ channels in lung epithelium by ATP release through pannexin and connexin hemichannels. FASEB J, 2014; 28, 45-55. doi:  10.1096/fj.13-229252
[47] Tonkin RS, Bowles C, Perera CJ, et al. Attenuation of mechanical pain hypersensitivity by treatment with Peptide5, a connexin-43 mimetic peptide, involves inhibition of NLRP3 inflammasome in nerve-injured mice. Exp Neurol, 2018; 300, 1-12. doi:  10.1016/j.expneurol.2017.10.016
[48] Mugisho OO, Green CR, Kho DT, et al. The inflammasome pathway is amplified and perpetuated in an autocrine manner through connexin43 hemichannel mediated ATP release. Biochim Biophys Acta Gen Subj, 2018; 1862, 385-93. doi:  10.1016/j.bbagen.2017.11.015
[49] Lohman AW, Isakson BE. Differentiating connexin hemichannels and pannexin channels in cellular ATP release. Febs Letters, 2014; 588, 1379-88. doi:  10.1016/j.febslet.2014.02.004