[1] Quan FS, Vunnava A, Compans RW, et al. Virus-like particle vaccine protects against 2009 H1N1 pandemic influenza virus in mice. PloS One, 2010; 5, e9161. doi:  10.1371/journal.pone.0009161
[2] Ren Z, Zhao Y, Liu J, et al. Intramuscular and intranasal immunization with an H7N9 influenza virus-like particle vaccine protects mice against lethal influenza virus challenge. Int Immunopharmacol, 2018; 58, 109-16. doi:  10.1016/j.intimp.2017.12.020
[3] Stöhr K. Influenza-WHO cares. Lancet Infect Dis, 2002; 2, 517. doi:  10.1016/S1473-3099(02)00366-3
[4] Russell CA, Jones TC, Barr IG, et al. The global circulation of seasonal influenza A (H3N2) viruses. Science, 2008; 320, 340-6. doi:  10.1126/science.1154137
[5] Paules C, Subbarao K. Influenza. Lancet, 2017; 390, 697-708. doi:  10.1016/S0140-6736(17)30129-0
[6] Schulze K, Ebensen T, Babiuk LA, et al. Intranasal vaccination with an adjuvanted polyphosphazenes nanoparticle-based vaccine formulation stimulates protective immune responses in mice. Nanomedicine, 2017; 13, 2169-78. doi:  10.1016/j.nano.2017.05.012
[7] Houser K, Subbarao K. Influenza vaccines:challenges and solutions. Cell Host Microbe, 2015; 17, 295-300. doi:  10.1016/j.chom.2015.02.012
[8] Tada R, Yamanaka D, Ogasawara M, et al. Polymeric Caffeic Acid Is a Safer Mucosal Adjuvant That Augments Antigen-Specific Mucosal and Systemic Immune Responses in Mice. Mol Pharm, 2018; 15, 4226-34. doi:  10.1021/acs.molpharmaceut.8b00648
[9] Saito S, Ainai A, Suzuki T, et al. The effect of mucoadhesive excipient on the nasal retention time of and the antibody responses induced by an intranasal influenza vaccine. Vaccine, 2016; 34, 1201-7. doi:  10.1016/j.vaccine.2016.01.020
[10] Wu H, Bao Y, Wang X, et al. Alkyl polyglycoside, a highly promising adjuvant in intranasal split influenza vaccines. Hum Vaccin Immunother, 2017; 13, 1-9. doi:  10.1080/21645515.2017.1278976
[11] Ren ST, Zhang XM, Sun PF, et al. Intranasal Immunization Using Mannatide as a Novel Adjuvant for an Inactivated Influenza Vaccine and Its Adjuvant Effect Compared with MF59. PLoS one, 2017; 12, e0169501. doi:  10.1371/journal.pone.0169501
[12] Lycke N. Recent progress in mucosal vaccine development:potential and limitations. Nat Rev Immunol, 2012; 12, 592-605. doi:  10.1038/nri3251
[13] Pedersen G, Cox R. The mucosal vaccine quandary:intranasal vs. sublingual immunization against influenza. Hum Vaccin Immunother, 2012; 8, 689-93. doi:  10.4161/hv.19568
[14] Fang Y, Zhang T, Lidell L, et al. The immune complex CTA1-DD/IgG adjuvant specifically targets connective tissue mast cells through FcgammaRⅢA and augments anti-HPV immunity after nasal immunization. Mucosal Immunol, 2013; 6, 1168-78. doi:  10.1038/mi.2013.16
[15] Lycke N, Tsuji T, JH. The adjuvant effect of Vibrio cholerae and Escherichia coli heat-labile enterotoxinsis linked to their ADP-ribosyltransferase activity. Eur J Immunol, 1992; 22, 2277-81. doi:  10.1002/(ISSN)1521-4141
[16] Agren LC, Ekman L, Löwenadler B, et al. Genetically engineered nontoxic vaccine adjuvant that combines B cell targeting with immunomodulation by cholera toxin A1 subunit. J Immunol, 1997; 158, 3936-46. http://cn.bing.com/academic/profile?id=ebc03860dfdde252a1d536fe8f5e1077&encoded=0&v=paper_preview&mkt=zh-cn
[17] Akhiani AA, Stensson A, Schön K, et al. The nontoxic CTA1-DD adjuvant enhances protective immunity against Helicobacter pylori infection following mucosal immunization. Scand J Immunol, 2006; 63, 97-105. doi:  10.1111/sji.2006.63.issue-2
[18] Andersen C, Dietrich JE, Lycke N, et al. The combined CTA1-DD/ISCOMs vector is an effective intranasal adjuvant for boosting prior Mycobacterium bovis BCG immunity to Mycobacterium tuberculosis. Infection & Immunity, 2007; 75, 408-16. http://cn.bing.com/academic/profile?id=ee38da15bc4053def72134c26c1b9120&encoded=0&v=paper_preview&mkt=zh-cn
[19] Mcneal MM, Basu M, Bean JA, et al. Intrarectal immunization of mice with VP6 and either LT(R192G) or CTA1-DD as adjuvant protects against fecal rotavirus shedding after EDIM challenge. Vaccine, 2007; 25, 6224-31. doi:  10.1016/j.vaccine.2007.05.065
[20] Sundling C, Schon K, Morner A, et al. CTA1-DD adjuvant promotes strong immunity against human immunodeficiency virus type Ι envelope glycoproteins following mucosal immunization. J Gen Virol, 2008; 89, 2954-64. doi:  10.1099/vir.0.2008/005470-0
[21] Fan X, Su Q, Qiu F, et al. Intranasal inoculate of influenza virus vaccine against lethal virus challenge. Vaccine, 2018; 36, 4354-61. doi:  10.1016/j.vaccine.2018.05.075
[22] Su QD, He SH, Yi Y, et al. Intranasal vaccination with ebola virus GP amino acids 258-601 protects mice against lethal challenge. Vaccine, 2018; 36, 6053-60. doi:  10.1016/j.vaccine.2018.09.003
[23] Kim JK, Seiler P, Forrest HL, et al. Pathogenicity and vaccine efficacy of different clades of Asian H5N1 avian influenza A viruses in domestic ducks. J Virol, 2008; 82, 11374-82. doi:  10.1128/JVI.01176-08
[24] Brandtzaeg P, Pabst R. Let's go mucosal:communication on slippery ground. Trends Immunol, 2004; 25, 570-7. doi:  10.1016/j.it.2004.09.005
[25] Kim ED, Han SJ, Byun YH, et al. Inactivated Eyedrop Influenza Vaccine Adjuvanted with Poly(I:C) Is Safe and Effective for Inducing Protective Systemic and Mucosal Immunity. PloS One, 2015; 10, e0137608. doi:  10.1371/journal.pone.0137608
[26] Hasegawa H, Ichinohe T, Tamura SI, et al. Development of a mucosal vaccine for influenza viruses:Preparation for a potential influenza pandemic. Expert Rev Vaccines, 2007; 6, 193-201. doi:  10.1586/14760584.6.2.193
[27] Valentina B, Karin N, Marta B, et al. Mucosal vaccine development based on liposome technology. J Immunol Res, 2016; 2016, 1-16. http://cn.bing.com/academic/profile?id=12c850e9976a78314a87d0674f369f20&encoded=0&v=paper_preview&mkt=zh-cn
[28] Takaki H, Ichimiya S, Matsumoto M, et al. Mucosal Immune Response in Nasal-Associated Lymphoid Tissue upon Intranasal Administration by Adjuvants. J Innate Iimmun, 2018; 1, 1-7. http://cn.bing.com/academic/profile?id=afdc0bc72b95386dbcb94bd0f24c5055&encoded=0&v=paper_preview&mkt=zh-cn
[29] Cao W, Kim JH, Reber AJ, et al. Nasal delivery of Protollin-adjuvanted H5N1 vaccine induces enhanced systemic as well as mucosal immunity in mice. Vaccine, 2017; 35, 3318-25. doi:  10.1016/j.vaccine.2017.05.004
[30] Eriksson A, Lycke N. The CTA1-DD vaccine adjuvant binds to human B cells and potentiates their T cell stimulating ability. Vaccine, 2003; 22, 185-93. doi:  10.1016/S0264-410X(03)00567-X
[31] Cunningham KA, Carey AJ, Lycke N, et al. CTA1-DD is an effective adjuvant for targeting anti-chlamydial immunity to the murine genital mucosa. J Reprod Immunol, 2009; 81, 34-8. doi:  10.1016/j.jri.2009.04.002
[32] Johansson EL, Bergquist C, Edebo A, et al. Comparison of different routes of vaccination for eliciting antibody responses in the human stomach. Vaccine, 2004; 22, 984-90. doi:  10.1016/j.vaccine.2003.09.002
[33] Pavot V, Rochereau N, Genin C, et al. New insights in mucosal vaccine development. Vaccine, 2012; 30, 142-54. doi:  10.1016/j.vaccine.2011.11.003
[34] Yanagita M, Hiroi T, Kitagaki N, et al. Nasopharyngeal-Associated Lymphoreticular Tissue (NALT) Immunity:Fimbriae-Specific Th1 and Th2 Cell-Regulated IgA Responses for the Inhibition of Bacterial Attachment to Epithelial Cells and Subsequent Inflammatory Cytokine Production. J Immunol, 1999; 162, 3559-65. http://cn.bing.com/academic/profile?id=c9bc6b3d1675d64a7b667658e3205f34&encoded=0&v=paper_preview&mkt=zh-cn
[35] Kiyono H, Fukuyama S. NALT-versus Peyer's-patch-mediated mucosal immunity. Nat Rev Immunol, 2004; 4, 699-710. doi:  10.1038/nri1439
[36] Murphy BR, Clements ML. The systemic and mucosal immune response of humans to influenza A virus. Curr Top Microbiol Immunol, 1989; 146, 107-16. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3347357
[37] Eriksson AM, Schön KM, Lycke NY. The Cholera Toxin-Derived CTA1-DD Vaccine Adjuvant Administered Intranasally Does Not Cause Inflammation or Accumulate in the Nervous Tissues. J Immunol, 2004; 173, 3310-9. doi:  10.4049/jimmunol.173.5.3310
[38] Ainai A, Tamura S, Suzuki T, et al. Intranasal vaccination with an inactivated whole influenza virus vaccine induces strong antibody responses in serum and nasal mucus of healthy adults. Hum Vaccin Immunother, 2013; 9, 1962-70. doi:  10.4161/hv.25458
[39] Thommes EW, Kruse M, Kohli M, et al. Review of seasonal influenza in Canada:Burden of disease and the cost-effectiveness of quadrivalent inactivated influenza vaccines. Hum Vaccin Immunother, 2017; 13, 867-76. doi:  10.1080/21645515.2016.1251537
[40] Liang XF, Li L, Liu DW, et al. Safety of influenza A (H1N1) vaccine in postmarketing surveillance in China. N Engl J Med, 2001; 364, 638-47. http://cn.bing.com/academic/profile?id=48c145decbb5293166fbc11aa6234691&encoded=0&v=paper_preview&mkt=zh-cn
[41] McElhaney JE, Xie D, Hager WD, et al. T Cell Responses Are Better Correlates of Vaccine Protection in the Elderly. J Immunol, 2006; 176, 6333-9. doi:  10.4049/jimmunol.176.10.6333
[42] Sridhar S, Begom S, Bermingham A, et al. Cellular immune correlates of protection against symptomatic pandemic influenza. Nat Med, 2013; 19, 1305-12. doi:  10.1038/nm.3350
[43] Otani N, Shima M, Ueda T, et al. Evaluation of influenza vaccine-immunogenicity in cell-mediated immunity. Cell Immunol, 2016; 310, 165-9. doi:  10.1016/j.cellimm.2016.09.005
[44] Boehm U, Klamp T, Groot M, et al. Cellular responses to interferon-γ. Annu Rev Immunol, 1997; 15, 749-95. doi:  10.1146/annurev.immunol.15.1.749
[45] Asahi-Ozaki Y, Yoshikawa T, Iwakura Y, et al. Secretory IgA antibodies provide cross-protection against infection with different strains of influenza B virus. J Med Virol, 2004; 74, 328-35. doi:  10.1002/(ISSN)1096-9071
[46] Renegar KB, Small PA, Boykins LG, et al. Role of IgA versus IgG in the Control of Influenza Viral Infection in the Murine Respiratory Tract. J Immunol, 2004; 173, 1978-86. doi:  10.4049/jimmunol.173.3.1978
[47] Baumgarth N, Kelso A. Functionally distinct T cells in three compartments of the respiratory tract after influenza virus infection. Eur J Immunol, 1996; 26, 2189-97. doi:  10.1002/(ISSN)1521-4141