[1] Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science, 1991; 254, 1178-81. doi:  10.1126/science.1957169
[2] Zhang A, Zhang Q, Chen CL, et al. Methods and algorithms for optical coherence tomography-based angiography:a review and comparison. J Biomed Opt, 2015; 20, 100901. doi:  10.1117/1.JBO.20.10.100901
[3] Wang RK. Three-dimensional optical micro-angiography maps directional blood perfusion deep within microcirculation tissue beds in vivo. Phys Med Biol, 2007; 52, N531-7. doi:  10.1088/0031-9155/52/23/N01
[4] Thorell MR, Zhang Q, Huang Y, et al. Swept-source OCT angiography of macular telangiectasia type 2. Ophthalmic Surg Lasers Imaging Retina, 2014; 45, 369-80. doi:  10.3928/23258160-20140909-06
[5] Zhang Q, Wang RK, Chen CL, et al. Swept Source Optical Coherence Tomography Angiography of Neovascular Macular Telangiectasia Type 2. Retina, 2015; 35, 2285-99. doi:  10.1097/IAE.0000000000000840
[6] Rezaei KA, Zhang Q, Kam J, et al. Optical coherence tomography based microangiography as a non-invasive imaging modality for early detection of choroido-neovascular membrane in choroidal rupture. Springerplus, 2016; 5, 1470. doi:  10.1186/s40064-016-3161-x
[7] Kim AY, Rodger DC, Shahidzadeh A, et al. Quantifying Retinal Microvascular Changes in Uveitis Using Spectral-Domain Optical Coherence Tomography Angiography. Am J Ophthalmol, 2016; 171, 101-12. doi:  10.1016/j.ajo.2016.08.035
[8] Chen CL, Bojikian KD, Gupta D, et al. Optic nerve head perfusion in normal eyes and eyes with glaucoma using optical coherence tomography-based microangiography. Quant Imaging Med Surg, 2016; 6, 125-33. doi:  10.21037/qims
[9] Bojikian KD, Chen CL, Wen JC, et al. Optic Disc Perfusion in Primary Open Angle and Normal Tension Glaucoma Eyes Using Optical Coherence Tomography-Based Microangiography. PLoS One, 2016; 11, e0154691. doi:  10.1371/journal.pone.0154691
[10] Lin AD, Lee AY, Zhang Q, et al. Association between OCT-based microangiography perfusion indices and diabetic retinopathy severity. Br J Ophthalmol, 2016; 101, 960-4. http://bjo.bmj.com/content/101/7/960
[11] Chen CL, Zhang A, Bojikian KD, et al. Peripapillary Retinal Nerve Fiber Layer Vascular Microcirculation in Glaucoma Using Optical Coherence Tomography-Based Microangiography. Invest Ophthalmol Vis Sci, 2016; 57, OCT475-85. doi:  10.1167/iovs.15-18909
[12] Rezaei KA, Zhang Q, Chen CL, et al. Retinal and choroidal vascular features in patients with retinitis pigmentosa imaged by OCT based microangiography. Graefes Arch Clin Exp Ophthalmol, 2017; 255, 1287-95. doi:  10.1007/s00417-017-3633-x
[13] Yin X, Chao JR, Wang RK. User-guided segmentation for volumetric retinal optical coherence tomography images. J Biomed Opt, 2014; 19, 086020. doi:  10.1117/1.JBO.19.8.086020
[14] Tan ACS, Tan GS, Denniston AK, et al. An overview of the clinical applications of optical coherence tomography angiography. Eye (Lond), 2017; 32, 262-86. doi:  10.1007/s00432-018-2690-9
[15] Chu Z, Lin J, Gao C, et al. Quantitative assessment of the retinal microvasculature using optical coherence tomography angiography. J Biomed Opt, 2016; 21, 66008. doi:  10.1117/1.JBO.21.6.066008
[16] Choi WJ, Qin W, Chen CL, et al. Characterizing relationship between optical microangiography signals and capillary flow using microfluidic channels. Biomed Opt Express, 2016; 7, 2709-28. doi:  10.1364/BOE.7.002709
[17] Michelson G, Langhans MJ, Groh MJ. Clinical investigation of the combination of a scanning laser ophthalmoscope and laser Doppler flowmeter. Ger J Ophthalmol, 1995; 4, 342-9. doi:  10.1007%2Fs00417-004-1070-0
[18] Raabe A, Beck J, Gerlach R, et al. Near-infrared indocyanine green video angiography:a new method for intraoperative assessment of vascular flow. Neurosurgery, 2003; 52, 132-9. http://www.ncbi.nlm.nih.gov/pubmed/12493110
[19] Cheng H, Yan Y, Duong TQ. Temporal statistical analysis of laser speckle images and its application to retinal blood-flow imaging. Opt Express, 2008; 16, 10214-9. doi:  10.1364/OE.16.010214
[20] Takayama K, Ito Y, Kaneko H, et al. Comparison of indocyanine green angiography and optical coherence tomographic angiography in polypoidal choroidal vasculopathy. Eye (Lond), 2017; 31, 45-52. doi:  10.1038/eye.2016.232
[21] Spaide RF, Klancnik JM Jr, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol, 2015; 133, 45-50. doi:  10.1001/jamaophthalmol.2014.3616
[22] Mariampillai A, Standish BA, Moriyama EH, et al. Speckle variance detection of microvasculature using swept-source optical coherence tomography. Opt Lett, 2008; 33, 1530-2. doi:  10.1364/OL.33.001530
[23] Enfield J, Jonathan E, Leahy M. In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT). Biomed Opt Express, 2011; 2, 1184-93. doi:  10.1364/BOE.2.001184
[24] Tokayer J, Jia Y, Dhalla AH, et al. Blood flow velocity quantification using split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Biomed Opt Express, 2013; 4, 1909-24. doi:  10.1364/BOE.4.001909
[25] Reif R, Qin J, An L, et al. Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system. Int J Biomed Imaging, 2012; 2012, 509783. https://core.ac.uk/display/29440196
[26] Jia Y, Bailey ST, Hwang TS, et al. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci USA, 2015; 112, E2395-402. doi:  10.1073/pnas.1500185112
[27] Agemy SA, Scripsema NK, Shah CM, et al. Retinal Vascular Perfusion Density Mapping Using Optical Coherence Tomography Angiography in Normals and Diabetic Retinopathy Patients. Retina, 2015; 35, 2353-63. doi:  10.1097/IAE.0000000000000862
[28] Wang RK, An L, Francis P, et al. Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography. Opt Lett, 2010; 35, 1467-9. doi:  10.1364/OL.35.001467
[29] Lei J, Durbin MK, Shi Y, et al. Repeatability and Reproducibility of Superficial Macular Retinal Vessel Density Measurements Using Optical Coherence Tomography Angiography En Face Images. JAMA Ophthalmol, 2017; 135, 1092-8. doi:  10.1001/jamaophthalmol.2017.3431
[30] Wu LZ, Huang ZS, Wu DZ, et al. Characteristics of the capillary-free zone in the normal human macula. Jpn J Ophthalmol, 1985; 29, 406-11. http://www.ncbi.nlm.nih.gov/pubmed/3831489
[31] You Q, Freeman WR, Weinreb RN, et al. Reproducibility of Vessel Density Measurement with Optical Coherence Tomography Angiography in Eyes with and without Retinopathy. Retina, 2017; 37, 1475. doi:  10.1097/IAE.0000000000001407
[32] Chen CL, Bojikian KD, Xin C, et al. Repeatability and reproducibility of optic nerve head perfusion measurements using optical coherence tomography angiography. J Biomed Opt, 2016; 21, 65002. doi:  10.1117/1.JBO.21.6.065002