[1] L Sheng, Y Lu, S Deng, et al. Transcription aptasensor: amplified, label-free and culture-independent detection of foodborne pathogens via light-up RNA aptamers. Chem Commun, 2019; 55, 10096−9. doi:  10.1039/C9CC05036A
[2] P Li, YF Poon, W Li, et al. A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nat Mater, 2011; 10, 149−56. doi:  10.1038/nmat2915
[3] B Lu, F Lu, L Ran, et al. Imidazole-molecule-capped chitosan–gold nanocomposites with enhanced antimicrobial activity for treating biofilm-related infections. J Colloid Interface Sci, 2018; 531, 269−81. doi:  10.1016/j.jcis.2018.07.058
[4] H Maaoui, R Jijie, GH Pan, et al. A 980 nm driven photothermal ablation of virulent and antibiotic resistant Gram-positive and Gram-negative bacteria strains using Prussian blue nanoparticles. Colloid Interface Sci, 2016; 480, 63−8. doi:  10.1016/j.jcis.2016.07.002
[5] Y Zhao, Z Chen, Y Chen, et al. Synergy of nonantibiotic drugs and pyrimidinethiol on gold nanoparticles against superbugs. J Am Chem Soc, 2013; 135, 12940−3. doi:  10.1021/ja4058635
[6] A Kassem, GM Ayoub, L Malaeb. Antibacterial activity of chitosan nano-composites and carbon nanotubes: a review. Sci Total Environ, 2019; 668, 566−76. doi:  10.1016/j.scitotenv.2019.02.446
[7] HL Shane, E Lukomska, ML Kashon, et al. Topical application of the quaternary ammonium compound didecyldimethylammonium chloride activates type 2 innate lymphoid cells and initiates a mixed-type allergic response. Toxicol Sci, 2019; 168, 508−18. doi:  10.1093/toxsci/kfz002
[8] Y Li, W Zhang, J Niu, et al. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano, 2012; 6, 5164−73. doi:  10.1021/nn300934k
[9] B Peng, YB Su, H Li, et al. Peng. Exogenous alanine and/or glucose plus kanamycin kills antibiotic-resistant bacteria. Cell Metab, 2015; 21, 249−62. doi:  10.1016/j.cmet.2015.01.008
[10] X Zhao, H Wu, B Guo, et al. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials, 2017; 122, 34−47. doi:  10.1016/j.biomaterials.2017.01.011
[11] KA Brogden. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol, 2005; 3, 238−50. doi:  10.1038/nrmicro1098
[12] JE Bean, DR Alves, M Laabei, et al. Triggered release of bacteriophage K from agarose/hyaluronan hydrogel matrixes by Staphylococcus aureus virulence factors. Chem Mater, 2014; 26, 7201−8. doi:  10.1021/cm503974g
[13] LJ Zhang, CF Guerrero-Juarez, T Hata, et al. Dermal adipocytes protect against invasive Staphylococcus aureus skin infection. Science, 2015; 347, 67. doi:  10.1126/science.1260972
[14] L Li, Y Liu, P Hao, et al. PEDOT nanocomposites mediated dual-modal photodynamic and photothermal targeted sterilization in both NIR I and II window. Biomaterials, 2015; 41, 132−40. doi:  10.1016/j.biomaterials.2014.10.075
[15] B Hu, N Wang, L Han, et al. Magnetic nanohybrids loaded with bimetal core–shell–shell nanorods for bacteria capture, separation, and near‐infrared photothermal treatment. Chem Eur J, 2015; 21, 6582−9. doi:  10.1002/chem.201405960
[16] F Solano. Melanin and melanin-related polymers as materials with biomedical and biotechnological applications—cuttlefish ink and mussel foot proteins as inspired biomolecules. Int J Mol Sci, 2017; 18, 1561. doi:  10.3390/ijms18071561
[17] A Elsaesser, CV Howard. Toxicology of nanoparticles. Adv Drug Delivery Rev, 2012; 64, 129−37. doi:  10.1016/j.addr.2011.09.001
[18] V Manirethan, K Raval, R Rajan, et al. Data on the removal of heavy metals from aqueous solution by adsorption using melanin nanopigment obtained from marine source: Pseudomonas stutzeri. Data Brief, 2018; 20, 178−89. doi:  10.1016/j.dib.2018.07.065
[19] KP Watts, RG Fairchild, DN Slatkin, et al. Melanin content of hamster tissues, human tissues, and various melanomas. Cancer Res, 1981; 41, 467−72.
[20] Y Liu, K Ai, J Liu, et al. Dopamine‐melanin colloidal nanospheres: an efficient near‐infrared photothermal therapeutic agent for in vivo cancer therapy. Adv Mater, 2013; 25, 1353−9. doi:  10.1002/adma.201204683
[21] M Araújo, R Viveiros, TR Correia, et al. Natural melanin: a potential pH-responsive drug release device. Int J Pharm, 2014; 469, 140−5. doi:  10.1016/j.ijpharm.2014.04.051
[22] CJ Bettinger, JP Bruggeman, A Misra, et al. Biocompatibility of biodegradable semiconducting melanin films for nerve tissue engineering. Biomaterials, 2009; 30, 3050−7. doi:  10.1016/j.biomaterials.2009.02.018
[23] KY Ju, Y Lee, S Lee, et al. Bioinspired polymerization of dopamine to generate melanin-like nanoparticles having an excellent free-radical-scavenging property. Biomacromolecules, 2011; 12, 625−32. doi:  10.1021/bm101281b
[24] JM Menter, AM Patta, TD Hollins, et al. Photoprotection of mammalian acid‐soluble collagen by cuttlefish sepia melanin in vitro. Photochem Photobiol, 1998; 68, 532−7. doi:  10.1111/j.1751-1097.1998.tb02510.x
[25] LHLXD Yahui, LJSNZ Liyuan. Ultrastructure and antioxidative activity of melanin from cuttlefish. Inst Food Sci Technol, 2012; 10, 62−6.
[26] X Guo, S Chen, Y Hu, et al. Preparation of water-soluble melanin from squid ink using ultrasound-assisted degradation and its anti-oxidant activity. J Food Sci Technol, 2014; 51, 3680−90. doi:  10.1007/s13197-013-0937-7
[27] S Chen, J Xu, C Xue, et al. Sequence determination of a non-sulfated glycosaminoglycan-like polysaccharide from melanin-free ink of the squid Ommastrephes bartrami by negative-ion electrospray tandem mass spectrometry and NMR spectroscopy. Glycoconjugate J, 2008; 25, 481−92. doi:  10.1007/s10719-007-9096-2
[28] I to. Reexamination of the structure of eumelanin. Acta Gen Subj, 1986; 883, 155−61. doi:  10.1016/0304-4165(86)90146-7
[29] Jr Liebscher, R Mrówczyński, HA Scheidt, et al. Structure of polydopamine: a never-ending story? Langmuir, 2013; 29, 10539−48. doi:  10.1021/la4020288
[30] S Ito, K Wakamatsu, M d’Ischia, et al. Structure of melanins. Wiley Online Library pp, 2011; 167−85.
[31] U Grienke, J Silke, D Tasdemir. Bioactive compounds from marine mussels and their effects on human health. Food Chem, 2014; 142, 48−60. doi:  10.1016/j.foodchem.2013.07.027
[32] B Wang, L Li, CF Chi, et al. Purification and characterisation of a novel antioxidant peptide derived from blue mussel (Mytilus edulis) protein hydrolysate. Food Chem, 2013; 138, 1713−9. doi:  10.1016/j.foodchem.2012.12.002
[33] A Naik, M Hayes. Bioprocessing of mussel by-products for value added ingredients. Trends Food Sci Technol, 2019; 92, 111−21. doi:  10.1016/j.jpgs.2019.08.013
[34] L Huang, Y Niu, R Li, et al. VOx quantum dots with multienzyme-mimic activities and the application in constructing a three-dimensional (3D) coordinate system for accurate discrimination of the hydrogen peroxide over a broad concentration range. Anal Chem, 2019; 91, 5753−61. doi:  10.1021/acs.analchem.8b05923
[35] Y Chen, MY Xie, SP Nie, et al. Purification composition analysis and antioxidant activity of a polysaccharide from the fruiting bodies of Ganoderma atrum. Food Chem, 2008; 107, 231−41. doi:  10.1016/j.foodchem.2007.08.021
[36] CR Prakash, S Raja, Synthesis. characterization and in vitro antimicrobial activity of some novel 5-substituted schiff and mannich base of isatin derivatives. J Saudi Chem Soc, 2013; 17, 337−44. doi:  10.1016/j.jscs.2011.10.022
[37] C Ge, R Wu, Y Chong, et al. Synthesis of Pt hollow nanodendrites with enhanced peroxidase‐like activity against bacterial infections: implication for wound healing. Adv Funct Mater, 2018; 28, 1801484. doi:  10.1002/adfm.201801484
[38] L Hang, Y Niu, G Xu, et al. Generation of vanadium oxide quantum dots with distinct fluorescent property and antibacterial activity via a room-temperature agitation strategy. Chem Nano Mat, 2018; 4, 1048−53.
[39] L Yuan, Y Niu, R Li, et al. Molybdenum oxide quantum dots prepared via one-step stirring strategy and applications as fluorescent probes for pyrophosphate sensing and efficient antibacterial materials. J. Mater. Chem B, 2018; 6, 3240−5. doi:  10.1039/C8TB00475G
[40] Y Li, W Ma, J Sun, et al. Electrochemical generation of Fe3C/N-doped graphitic carbon nanozyme for efficient wound healingin vivo. Carbon, 2019; 159, 149−60.
[41] JR Nakkala, R Mata, SR Sadras. Green synthesized nano silver: Synthesis, physicochemical profiling, antibacterial, anticancer activities and biologicalin vivo toxicity. J Colloid Interface Sci, 2017; 499, 33−45. doi:  10.1016/j.jcis.2017.03.090
[42] AA Bell, MH Wheeler. Biosynthesis and functions of fungal melanins. Annu Rev Phytopathol, 1986; 24, 411−51. doi:  10.1146/annurev.py.24.090186.002211
[43] P Selvakumar, S Rajasekar, K Periasamy, et al. Isolation and characterization of melanin pigment from Pleurotus cystidiosus (telomorph of Antromycopsismacrocarpa). World J Microbiol Biotechnol, 2008; 24, 2125−31. doi:  10.1007/s11274-008-9718-2
[44] DK Roper, W Ahn, M Hoepfner. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J Phy Chem C, 2007; 111, 3636−41. doi:  10.1021/jp064341w
[45] S Wu, A Li, X Zhao, et al. Silica coated gold-silver nanocages as photothermal antibacterial agents for combined anti-infective therapy. ACS Appl Mater Interfaces, 2019; 11, 17177−83. doi:  10.1021/acsami.9b01149
[46] Y Xiang, C Mao, X Liu, et al. Rapid and superior bacteria killing of carbon quantum dots/ZnO decorated injectable folic acid‐conjugated PDA hydrogel through dual‐light triggered ROS and membrane permeability. Small, 2019; 15, 1900322. doi:  10.1002/smll.201900322