[1] Erkekoglu P, Baydar T. Acrylamide neurotoxicity. Nutr Neurosci, 2014, 17:49-57. doi:  10.1179/1476830513Y.0000000065
[2] Blancher C, Cormick RM. Sodium dodecyl sulphatepolyacrylamide denaturing gel electrophoresis and Western blotting techniques. Methods Mol Biol, 2012, 878:89-110. doi:  10.1007/978-1-61779-854-2
[3] Tareke E, Rydberg P, Karlsson P, et al. Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J Agric Food Chem, 2002, 50:4998-5006. doi:  10.1021/jf020302f
[4] Lopachin RM, Gavin T. Acrylamide-induced nerve terminal damage: relevance to neurotoxic and neurodegenerative mechanisms. J Agric Food Chem, 2008, 56:5994-6003. doi:  10.1021/jf703745t
[5] Sabri MI, Spencer PS. How does acrylamide perturb axon transport and induce nerve fiber degeneration? Commentary on forum position paper, Neurotoxicology, 2002, 23:259-63. https://www.researchgate.net/publication/11164395_How_Does_Acrylamide_Perturb_Axon_Transport_and_Induce_Nerve_Fiber_Degeneration_Commentary_on_Forum_Position_Paper
[6] Sickles DW, Brady ST, Testino A, et al. Direct effect of the neurotoxicant acrylamide on kinesin-based microtubule motility. J Neurosci Res, 1996, 46:7-17. doi:  10.1002/(ISSN)1097-4547
[7] Tilson HA. The neurotoxicity of acrylamide: an overview. Neurotoxicol Teratol, 1981, 3:445-61. https://www.researchgate.net/publication/51286127_The_neurotoxicity_of_acrylamide_An_overview
[8] Zhang Bin, Xiao Jingwei, Chen Xiao, et al. Study on changes of glutamate and γ-aminobutyric acid neurotransmitters induced by acrylamide in rats. J Toxicol, 2016:107-112. (In Chinese) http://en.cnki.com.cn/Article_en/CJFDTotal-WSDL201602006.htm
[9] LoPachin RM, Ross JF, Lehning EJ. Nerve terminals as the primary site of acrylamide action: a hypothesis. Neurotoxicology, 2002, 23:43-59. doi:  10.1016/S0161-813X(01)00074-2
[10] LoPachin RM, Balaban CD, Ross JF. Acrylamide axonopathy revisited. Toxicol Appl Pharmacol, 2003, 188:135-53. doi:  10.1016/S0041-008X(02)00072-8
[11] Pechstein A, Shupliakov O. Taking a back seat: synaptic vesicle clustering in presynaptic terminals. Front Neurosci, 2010, 2, 143. http://www.oalib.com/paper/3124043
[12] Shupliakov O, Haucke V, Pechstein A. How synapsin Ⅰ may cluster synaptic vesicles. Semin Cell Dev Biol, 2011, 22:393-9. doi:  10.1016/j.semcdb.2011.07.006
[13] Greengard P, Valtorta F, Czernik AJ, et al. Synaptic vesicle phosphoproteins and regulation of synaptic function. Science, 1993, 259:780-5. doi:  10.1126/science.8430330
[14] Bykhovskaia M. Synapsin regulation of vesicle organization and functional pools. Semin Cell Dev Biol, 2011, 22:387-92. doi:  10.1016/j.semcdb.2011.07.003
[15] Xiao Jingwei, Meng Huilin, Yu Changyan, et al. Study on changes of synapsin Ⅰ in acrylamide-induced subacute neurotoxicity in rats. J Toxicol, 2013, 27:332-40. (In Chinese)
[16] Lehning EJ, Balaban CD, Ross JF, et al. Acrylamide neuropathy. Ⅱ. Spatiotemporal characteristics of nerve cell damage in brainstem and spinal cord, Neurotoxicology, 2002, 23:415-29. doi:  10.1016/S0161-813X(02)00080-3
[17] Nikonenko AG, Skibo GG. Technique to quantify local clustering of synaptic vesicles using single section data. Microsc Res Techniq, 2004, 65:287-91. doi:  10.1002/(ISSN)1097-0029
[18] McBride HM, Neuspiel M, Wasiak S. Mitochondria: More Than Just a Powerhouse. Curr Biol, 2006, 16, R551-R60. doi:  10.1016/j.cub.2006.06.054
[19] Hackett JT, Ueda T. Glutamate Release. Neurochem Res, 2015, 40:2443-60. doi:  10.1007/s11064-015-1622-1
[20] Fowler MW, Staras K. Synaptic vesicle pools: Principles, properties and limitations. Exp Cell Res, 2015, 335:150-6. doi:  10.1016/j.yexcr.2015.03.007
[21] Zhang XL, Guariglia SR, McGlothan JL, et al. Presynaptic mechanisms of lead neurotoxicity: effects on vesicular release, vesicle clustering and mitochondria number. Plos One, 2015, 10, e0127461. doi:  10.1371/journal.pone.0127461
[22] Li L, Chin LS, Shupliakov O, et al. Impairment of synaptic vesicle clustering and of synaptic transmission, and increased seizure propensity, in synapsin Ⅰ-deficient mice. Proc Natl Acad Sci USA, 1995, 92:9235-9. doi:  10.1073/pnas.92.20.9235
[23] Baldelli P, Fassio A, Valtorta F, et al. Lack of synapsin Ⅰ reduces the readily releasable pool of synaptic vesicles at central inhibitory synapses. J Neurosci, 2007, 27:13520-31. doi:  10.1523/JNEUROSCI.3151-07.2007
[24] Bogen IL, Boulland JL, Mariussen E, et al. Absence of synapsin Ⅰ and Ⅱ is accompanied by decreases in vesicular transport of specific neurotransmitters. J Neurochem, 2006, 96:1458-66. doi:  10.1111/jnc.2006.96.issue-5
[25] Bogen IL, Haug KH, Roberg B, et al. The importance of synapsin Ⅰ and Ⅱ for neurotransmitter levels and vesicular storage in cholinergic, glutamatergic and GABAergic nerve terminals. Neurochem Int, 2009, 55:13-21. doi:  10.1016/j.neuint.2009.02.006
[26] Cesca F, Baldelli P, Valtorta F, et al. The synapsins: key actors of synapse function and plasticity. Prog Neurobiol, 2010, 91:313-48. doi:  10.1016/j.pneurobio.2010.04.006
[27] Menegon A, Bonanomi D, Albertinazzi C, et al. Protein kinase A-mediated synapsin Ⅰ phosphorylation is a central modulator of Ca2+-dependent synaptic activity. J Neurosci, 2006, 26:11670-81. doi:  10.1523/JNEUROSCI.3321-06.2006
[28] Bonanomi D, Menegon A, Miccio A, et al. Phosphorylation of synapsin Ⅰ by cAMP-dependent protein kinase controls synaptic vesicle dynamics in developing neurons. J Neurosci, 2005, 25:7299-308. doi:  10.1523/JNEUROSCI.1573-05.2005