[1] Mubarak A, Hodgson JM, Considine MJ, et al. Supplementation of a high-fat diet with chlorogenic acid is associated with insulin resistance and hepatic lipid accumulation in mice. J Agric Food Chem, 2013; 61, 4371−8. doi:  10.1021/jf400920x
[2] Qin N, Chen Y, Jin MN, et al. Anti-obesity and anti-diabetic effects of flavonoid derivative (Fla-CN) via microRNA in high fat diet induced obesity mice. Eur J Pharm Sci, 2016; 82, 52−63. doi:  10.1016/j.ejps.2015.11.013
[3] Yun JW. Possible anti-obesity therapeutics from nature-a review. Phytochemistry, 2010; 71, 1625−41. doi:  10.1016/j.phytochem.2010.07.011
[4] Iyer A, Brown L. Fermented wheat germ extract (avemar) in the treatment of cardiac remodeling and metabolic symptoms in rats. Evid Based Complement Alternat Med, 2011; 2011, 508957.
[5] Sullivan P, Arendt E, Gallagher E. The increasing use of barley and barley by-products in the production of healthier baked goods. Trends Food Sci Tech, 2013; 29, 124−34. doi:  10.1016/j.jpgs.2012.10.005
[6] AbuMweis SS, Jew S, Ames NP. Beta-glucan from barley and its lipid-lowering capacity: a meta-analysis of randomized, controlled trials. Eur J Clin Nutr, 2010; 64, 1472−80. doi:  10.1038/ejcn.2010.178
[7] Choi JS, Kim H, Jung MH, et al. Consumption of barley beta-glucan ameliorates fatty liver and insulin resistance in mice fed a high-fat diet. Mol Nutr Food Res, 2010; 54, 1004−13. doi:  10.1002/mnfr.v54:7
[8] Seo CR, Yi B, Oh S, et al. Aqueous extracts of hulled barley containing coumaric acid and ferulic acid inhibit adipogenesis in vitro and obesity in vivo. J Funct Foods, 2015; 12, 208−18. doi:  10.1016/j.jff.2014.11.022
[9] Zhang JY, Xiao X, Dong Y, et al. Dietary supplementation with Lactobacillus plantarum dy-1 fermented barley suppresses body weight gain in high‐fat diet‐induced obese rats. J Sci Food Agric, 2016; 96, 4907−17. doi:  10.1002/jsfa.2016.96.issue-15
[10] Cannell IG, Kong YW, Bushell M. How do microRNAs regulate gene expression? Biochem Soc Trans, 2008; 36, 1224−31.
[11] Guan XM, Li YX, Xin H, et al. Effect of miR-467b on atherosclerosis of rats. Asian Pac J Trop Med, 2016; 9, 298−301. doi:  10.1016/j.apjtm.2016.01.026
[12] Zhao E, Keller MP, Rabaglia ME, et al. Obesity and genetics regulate microRNAs in islets, liver, and adipose of diabetic mice. Mamm Genome, 2009; 20, 476−85. doi:  10.1007/s00335-009-9217-2
[13] Lovis P, Roggli E, Laybutt DR, et al. Alterations in microRNA expression contribute to fatty acidinduced pancreatic beta-cell dysfunction. Diabetes, 2008; 57, 2728−36. doi:  10.2337/db07-1252
[14] Fu T, Choi SE, Kim DH, et al. Aberrantly elevated microRNA-34a in obesity attenuates hepatic responses to FGF19 by targeting a membrane coreceptor β-Klotho. Proc Natl Acad Sci, 2012; 109, 16137−42. doi:  10.1073/pnas.1205951109
[15] Esau C, Davis S, Murray SF, et al. MiR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab, 2006; 3, 87−98. doi:  10.1016/j.cmet.2006.01.005
[16] Zhang J, Xiao X, Dong Y, et al. The anti-obesity effect of fermented barley extracts with lactobacillus plantarum dy-1 and saccharomyces cerevisiae in diet-induced obese rats. Food Funct, 2017; 8, 1132−43. doi:  10.1039/C6FO01350C
[17] Zheng JS, Arnett DK, Parnell LD, et al. Genetic variants at PSMD3 interact with dietary fat and carbohydrate to modulate insulin resistance. J Nutr, 2013; 143, 354−61. doi:  10.3945/jn.112.168401
[18] Vitaglione P, Napolitano A, Fogliano V. Cereal dietary fibre, a natural functional ingredient to deliver phenolic compounds into the gut. Trends Food Sci Tech, 2008; 19, 451−63. doi:  10.1016/j.jpgs.2008.02.005
[19] Wilson TA, Nicolosi RJ, Delaney B, et al. Reduced and high molecular weight barley β-glucans decrease plasma total and non-HDL-cholesterol in hypercholesterolemic Syrian golden hamsters. J Nutr, 2004; 134, 2617−22. doi:  10.1093/jn/134.10.2617
[20] Lin YL, Chang YY, Yang DJ, et al. Beneficial effects of noni (Morinda citrifolia L.) juice on livers of high-fat dietary hamsters. Food Chem, 2013; 140, 31−8. doi:  10.1016/j.foodchem.2013.02.035
[21] Lin YL, Chou CH, Yang DJ, et al. Hypolipidemic and antioxidative effects of noni (Morinda citrifolia L.) juice on high-fat /cholesterol-dietaryhamsters. Plant Foods Hum Nutr, 2012; 67, 294−302. doi:  10.1007/s11130-012-0309-x
[22] Hao J, Zhang S, Zhou Y, et al. MicroRNA 421 suppresses DPC4/Smad4 in pancreatic cancer. Biochem Biophys Res Commun, 2011; 406, 552−7. doi:  10.1016/j.bbrc.2011.02.086
[23] Shen S, Li X. GW26-e4401 MiR-195-3p/-5p decrease cardiac fibroblast proliferation and the transdifferentiation into myofibroblasts. J Am Coll Cardiol, 2015; 66, C57.
[24] Gong X, Zhang K, Wang Y, et al. MicroRNA-130b targets Fmr1 and regulates embryonic neural progenitor cell proliferation and differentiation. Biochem Biophys Res Commun, 2013; 439, 493−500. doi:  10.1016/j.bbrc.2013.08.096
[25] Luo XJ, Tang DG, Gao TL, et al. MicroRNA-212 inhibits osteosarcoma cells proliferation and invasion by down-regulation of Sox4. Cell Physiol Biochem, 2014; 34, 2180−8. doi:  10.1159/000369661
[26] Yang Y, Dong J, Sun K, et al. Obesity and incidence of lung cancer: A meta-analysis. Int J Cancer, 2013; 132, 1162−9. doi:  10.1002/ijc.v132.5
[27] Kumarswamy R, Volkmann I, Beermann J, et al. Vascular importance of the miR-212/132 cluster. Eur Heart J, 2014; 35, 3224−31. doi:  10.1093/eurheartj/ehu344
[28] Xiao J, Bei Y, Liu J, et al. miR-212 downregulation contributes to the protective effect of exercise against non-alcoholic fatty liver via targeting FGF-21. J Cell Mol Med, 2016; 20, 204−16. doi:  10.1111/jcmm.12733
[29] Nesca V, Guay C, Jacovetti C, et al. Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes. Diabetologia, 2013; 56, 2203−12. doi:  10.1007/s00125-013-2993-y
[30] Esguerra JLS, Bolmeson C, Cilio CM, et al. Differential glucoseregulation of microRNAs in pancreatic islets of non-obese type 2 diabetes model Goto-Kakizaki rat. PLoS One, 2011; 6, e18613. doi:  10.1371/journal.pone.0018613
[31] Shi Y, Shu Z J, Xue X, et al. β2-Adrenergic receptor ablation modulates hepatic lipid accumulation and glucose tolerance in aging mice. Experimental Gerontology, 2016; 78, 32−8. doi:  10.1016/j.exger.2016.03.005
[32] Anavi S, Hahn-Obercyger M, Madar Z, et al. Mechanism for HIF-1 activation by cholesterol under normoxia:A redox signaling pathway for liver damage. Free Radical Biol Med, 2014; 71, 61−9. doi:  10.1016/j.freeradbiomed.2014.03.007
[33] Sacramento JF, Ribeiro MJ, Rodrigues T, et al. Insulin resistance is associated with tissue-specific regulation of HIF-1α and HIF-2α during mild chronic intermittent hypoxia. Respir Physiol Neurobiol, 2016; 228, 30−8. doi:  10.1016/j.resp.2016.03.007