[1] World Health Organization. Antimicrobial resistance global report on surveillance. http://apps.who.int/gb/ebwha/pdf_files/EB134/B134_R12-en.pdf. [2018-11-12]
[2] Nhung NT, Cuong NV, Thwaites G, et al. Antimicrobial usage and antimicrobial resistance in animal production in Southeast Asia: A review. Antibiotics (Basel), 2016; 5, 37. doi:  10.3390/antibiotics5040037
[3] O’Neill J. Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations. The Review on Antimicrobial Resistance. https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf. [2018-11-12]
[4] Liu YY, Wang Y, Walsh RT, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis, 2016; 16, 161−8. doi:  10.1016/S1473-3099(15)00424-7
[5] Ramírez-Castillo FY, Moreno-Flores AC, Avelar-González FJ, et al. An evaluation of multidrug-resistant Escherichia coli isolates in urinary tract infections from Aguascalientes, Mexico: cross-sectional study. Ann Clin Microbiol Antimicrob, 2018; 17, 34. doi:  10.1186/s12941-018-0286-5
[6] Dominguez JE, Redondo LM, Figueroa Espinosa RA, et al. Simultaneous carriage of mcr-1 and other antimicrobial resistance determinants in Escherichia coli from poultry. Front Microbiol, 2018; 9, 1679. doi:  10.3389/fmicb.2018.01679
[7] Doi Y, lovleva A, Bonomo RA. The ecology of extended-spectrum β-lactamases (ESBLs) in the developed world. J Travel Med, 2017; 24, S44-51.
[8] Azargun R, Sadeghi MR, Soroush Barhaghi MH, et al. The prevalence of plasmid-mediated quinolone resistance and ESBL-production in Enterobacteriaceae isolated from urinary tract infections. Infect Drug Resist, 2018; 1, 1007−14.
[9] Chen X, Zhao X, Che J, et al. Detection and dissemination of the colistin resistance gene, mcr-1, from isolates and faecal samples in China. J Med Microbiol, 2017; 66, 119−25. doi:  10.1099/jmm.0.000425
[10] Moghnieh RA, Kanafani ZA, Tabaja HZ, et al. Epidemiology of common resistant bacterial pathogens in the countries of the Arab League. Lancet Infect Dis, 2018; 18, e379−84. doi:  10.1016/S1473-3099(18)30414-6
[11] Jousset AB, Bernabeu S, Bonnin RA, et al. Development and validation of a multiples PCR assay for the detection of the five families of plasmid-encoded colistin resistance. Int J Antimicrob Agents, 2019; 53, 302−9. doi:  10.1016/j.ijantimicag.2018.10.022
[12] Spurgeon SL, Jones RC, Ramakrishnan R. High throughput gene expression measurement with real time PCR in a microfluidic dynamic array. PLoS One, 2008; 3, e1662. doi:  10.1371/journal.pone.0001662
[13] Dhoubhadel BG, Yasunami M, Yoshida LM, et al. A novel high-throughput method for molecular serotyping and serotype-specific quantification of Streptococcus pneumoniae using a nanofluidic real-time PCR system. J Med Microbiol, 2014; 63, 528−39. doi:  10.1099/jmm.0.071464-0
[14] Michelet L, Delannoy S, Devillers E, et al. High-throughput screening of tick-borne pathogens in Europe. Front Cell Infect Microbiol, 2014; 4, 103.
[15] Dufour MC, Magnin N, Dumas B, et al. High-throughput gene-expression quantification of grapevine defense responses in the field using microfluidic dynamic arrays. BMC Genomics, 2016; 17, 957. doi:  10.1186/s12864-016-3304-z
[16] Che J, Zhao X, Lu J, et al. Establishment of a duplex MGB real-time PCR assay for int1 gene and ISCR1 element detections. Dis Surveil, 2017; 32, 878−82. (In Chinese)
[17] Gong L, Yuan M, Chen X, et al. Establishment of Real-time PCR assay to detect resistance gene armA. Dis Surveil, 2014; 29, 901−4. (In Chinese)
[18] O’Neill J. Tackling drug-resistant infections globally: final report and recommendations. https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf. [2018-11-12]
[19] Ishii S, Segawa T, Okabe S. Simultaneous quantification of multiple food- and waterborne pathogens by use of microfluidic quantitative PCR. Appl Environ Microbial, 2013; 79, 2891−8. doi:  10.1128/AEM.00205-13
[20] Chen X, Li GX, Zhang H, et al. Characterization of class 1 integron gene cassettes among clinical bacteria isolated from one large hospital in northern China. Biomed Environ Sci, 2013; 26, 1003−7.
[21] Colello R, Krüger A, Conza JD, et al. Antimicrobial resistance in class 1 integron-positive Shiga toxin-producing Escherichia coli isolated from cattle, pigs, food and farm environment. Microorganisms, 2018; 6, 99. doi:  10.3390/microorganisms6040099
[22] Faghri J, Nouri S, Jalalifar S, et al. Investigation of antimicrobial susceptibility, class I and II integrons among Pseudomonas aeruginosa isolates from hospitalized patients in Isfahan, Iran. BMC Res Notes, 2018; 11, 806. doi:  10.1186/s13104-018-3901-9
[23] Ur Rahman S, Ali T, Ali I, et al. The growing genetic and functional diversity of extended spectrum beta-lactamases. Biomed Res Int, 2018; 95, 19718.
[24] Bidell MR, Palchak M, Mohr J, et al. Fluoroquinolone and third-generation-cephalosporin resistance among hospitalized patients with urinary tract infections due to Escherichia coli: Do rates vary by hospital characteristics and geographic region? Antimicrob Agents Chemother, 2016; 60, 3170−3. doi:  10.1128/AAC.02505-15
[25] Wang Y, Zhang R, Li J, et al. Comprehensive resistome analysis reveals the prevalence of NDM and MCR-1 in Chinese poultry production. Nat Microbiol, 2017; 2, 16260. doi:  10.1038/nmicrobiol.2016.260
[26] Danadchi I, Chabou S, Daoud Z, et al. Prevalence and emergence of extended-spectrum cephalosporin-, carbapenems- and colistin-resistant gram negative bacteria of animal origin in the Mediterranean Basin Front Microbiol, 2018; 9, 2299.
[27] Vikram A, Schmidt JW. Functional blaKPC-2 sequences are present in U.S. beef cattle feces regardless of antibiotic use Foodborne Pathog Dis, 2018; 15, 444-8.
[28] Dimude JU, Amyes SGB. Molecular characterisation and diversity in Enterobacter cloacae from Edinburgh and Egypt carrying blaCTX-M-14 and blaVIM-4 β-lactamase genes. Int J Antimicrob Agents, 2013; 41, 574−7. doi:  10.1016/j.ijantimicag.2013.02.012
[29] Lallement C, Pasternak C, Ploy M-C, et al. The role of ISCR1-borne POUT promoters in the expreesion of antibiotic resistance genes. Front Microbiol, 2018; 9, 2579. doi:  10.3389/fmicb.2018.02579
[30] Toleman MA, Bennett PM, Walsh TR. ISCR elements: novel gene-capturing systems of the 12st century? Microbiol Mol Biol Rev, 2006; 70, 296−16. doi:  10.1128/MMBR.00048-05
[31] Bennett PM. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br J Pharmacol, 2008; 153, S347−57. doi:  10.1038/sj.bjp.0707569
[32] Chen X, Che J, Zhao X, et al. Dissemination of insertion sequence common regions 1 and int1 gene and drug resistance of 483 Escherichia coli and Klebsiella pneumonia broiler isolates. Chinese Journal of Preventive Medicine, 2017; 51, 886−9. (In Chinese)
[33] Theuretzbacher U. Global antimicrobial resistance in Gram-negative pathogens and clinical need. Curr Opin Microbiol, 2017; 39, 106−12. doi:  10.1016/j.mib.2017.10.028