[1] Roosli M, Rapp R, Braun-Fahrlander C. Radio and microwave frequency radiation and health——an analysis of the literature. Gesundheitswesen, 2003; 65, 378-92. doi:  10.1055/s-2003-40311
[2] China's Ministry of Environmental Protection and the State Administration of Quality Supervision, Inspection and Quarantine. Controlling limits for electromagnetic environment (National standard of the People's Republic of China, GB 8702-2014). http://www.cssn.net.cn[2017-01-08]
[3] World Health Organization. What is the International EMF Project? http://www.who.int/peh-emf/project/EMF_Project/en/index.html[2017-01-08]
[4] Institute of Electrical and Electronics Engineers. IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. http://standards.ieee.org[2017-01-08]
[5] Ms M. Thermal versus nonthermal mechanisms of interactions between electromagnetic fields and biological systems. In: Ayrapetyan SN and Markov M (eds), Bioelectromagnetics: Current Concepts. Springer, Dordrecht, the Netherlands, 2006; 1-16.
[6] Ms M. Nonthermal mechanism of interactions between electromagnetic fields and biological systems:a calmodulin example. Environmentalist, 2011; 31, 114-20. doi:  10.1007/s10669-011-9321-1
[7] Jauchem JR. A literature review of medical side effects from radio-frequency energy in the human environment:involving cancer, tumors, and problems of the central nervous system. J Microw Power Electromagn Energy, 2003; 38, 103-23. doi:  10.1080/08327823.2003.11688492
[8] Erdem Koc G, Kaplan S, Altun G, et al. Neuroprotective effects of melatonin and omega-3 on hippocampal cells prenatally exposed to 900 MHz electromagnetic fields. Int J Radiat Biol, 2016; 92, 590-5. doi:  10.1080/09553002.2016.1206223
[9] Sharma A, Kesari KK, Saxena VK, et al. Ten gigahertz microwave radiation impairs spatial memory, enzymes activity, and histopathology of developing mice brain. Mol Cell Biochem, 2017; 435, 1-13. doi:  10.1007/s11010-017-3051-8
[10] Wang H, Peng R, Zhao L, et al. The relationship between NMDA receptors and microwave-induced learning and memory impairment:a long-term observation on Wistar rats. Int J Radiat Biol, 2015; 91, 262-9. doi:  10.3109/09553002.2014.988893
[11] Wang H, Peng R, Zhou H, et al. Impairment of long-term potentiation induction is essential for the disruption of spatial memory after microwave exposure. Int J Radiat Biol, 2013; 89, 1100-7. doi:  10.3109/09553002.2013.817701
[12] Wang LF, Wei L, Qiao SM, et al. Microwave-Induced Structural and Functional Injury of Hippocampal and PC12 Cells Is Accompanied by Abnormal Changes in the NMDAR-PSD95-CaMKⅡ Pathway. Pathobiology, 2015; 82, 181-94. doi:  10.1159/000398803
[13] Xiong L, Sun CF, Zhang J, et al. Microwave exposure impairs synaptic plasticity in the rat hippocampus and PC12 cells through over-activation of the NMDA receptor signaling pathway. Biomed Environ Sci, 2015; 28, 13-24. https://www.sciencedirect.com/science/article/pii/S0895398815600022
[14] Zhao L, Peng RY, Wang SM, et al. Relationship between cognition function and hippocampus structure after long-term microwave exposure. Biomed Environ Sci, 2012; 25, 182-8. https://www.sciencedirect.com/science/article/pii/S0895398812600427
[15] Megha K, Deshmukh PS, Banerjee BD, et al. Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain. Neurotoxicology, 2015; 51, 158-65. doi:  10.1016/j.neuro.2015.10.009
[16] Zhao L, Peng RY, Wang SM, et al. Relationship between cognition function and hippocampus structure after long-term microwave exposure. Biomed Environ Sci, 2012; 25, 182-8. https://www.sciencedirect.com/science/article/pii/S0895398812600427
[17] Deshmukh PS, Banerjee BD, Abegaonkar MP, et al. Effect of low level microwave radiation exposure on cognitive function and oxidative stress in rats. Indian J Biochem Biophys, 2013; 50, 114-9. doi:  10.1177/1091581815574348
[18] Valbonesi P, Franzellitti S, Bersani F, et al. Activity and expression of acetylcholinesterase in PC12 cells exposed to intermittent 1.8 GHz 217-GSM mobile phone signal. Int J Radiat Biol, 2016; 92, 1-10. doi:  10.3109/09553002.2016.1114188
[19] Kesari KK, Siddiqui MH, Meena R, et al. Cell phone radiation exposure on brain and associated biological systems. Indian J Exp Biol, 2013; 51, 187-200.
[20] Del Vecchio G, Giuliani A, Fernandez M, et al. Effect of radiofrequency electromagnetic field exposure on in vitro models of neurodegenerative disease. Bioelectromagnetics, 2009; 30, 564-72. doi:  10.1002/bem.v30:7
[21] Arendash GW, Sanchez-Ramos J, Mori T, et al. Electromagnetic field treatment protects against and reverses cognitive impairment in Alzheimer's disease mice. J Alzheimers Dis, 2010; 19, 191-210. doi:  10.3233/JAD-2010-1228
[22] Banaceur S, Banasr S, Sakly M, et al. Whole body exposure to 2.4 GHz WIFI signals:effects on cognitive impairment in adult triple transgenic mouse models of Alzheimer's disease (3xTg-AD). Behav Brain Res, 2013; 240, 197-201. doi:  10.1016/j.bbr.2012.11.021
[23] Schuz J, Waldemar G, Olsen JH, et al. Risks for central nervous system diseases among mobile phone subscribers:a Danish retrospective cohort study. PLoS One, 2009; 4, e4389. doi:  10.1371/journal.pone.0004389
[24] Eghlidospour M, Ghanbari A, Mortazavi SMJ, et al. Effects of radiofrequency exposure emitted from a GSM mobile phone on proliferation, differentiation, and apoptosis of neural stem cells. Anat Cell Biol, 2017; 50, 115-23. doi:  10.5115/acb.2017.50.2.115
[25] Tamrin SH, Majedi FS, Tondar M, et al. Electromagnetic Fields and Stem Cell Fate:When Physics Meets Biology. Rev Physiol Biochem Pharmacol, 2016; 171, 63-97. doi:  10.1007/978-3-319-43814-6
[26] Maziarz A, Kocan B, Bester M, et al. How electromagnetic fields can influence adult stem cells:positive and negative impacts. Stem Cell Res Ther, 2016; 7, 54. doi:  10.1186/s13287-016-0312-5
[27] Maioli M, Rinaldi S, Santaniello S, et al. Radio electric conveyed fields directly reprogram human dermal skin fibroblasts toward cardiac, neuronal, and skeletal muscle-like lineages. Cell Transplant, 2013; 22, 1227-35. doi:  10.3727/096368912X657297
[28] Huber LA, Teis D. Lysosomal signaling in control of degradation pathways. Curr Opin Cell Biol, 2016; 39, 8-14. doi:  10.1016/j.ceb.2016.01.006
[29] Ravikumar B, Sarkar S, Davies JE, et al. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev, 2010; 90, 1383-435. doi:  10.1152/physrev.00030.2009
[30] Kaushik S, Bandyopadhyay U, Sridhar S, et al. Chaperone-mediated autophagy at a glance. J Cell Sci, 2011; 124, 495-9. doi:  10.1242/jcs.073874
[31] Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol, 2011; 27, 107-32. doi:  10.1146/annurev-cellbio-092910-154005
[32] Lin MG, Hurley JH. Structure and function of the ULK1 complex in autophagy. Curr Opin Cell Biol, 2016; 39, 61-8. doi:  10.1016/j.ceb.2016.02.010
[33] Itakura E, Mizushima N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy, 2010; 6, 764-76. doi:  10.4161/auto.6.6.12709
[34] Russell RC, Tian Y, Yuan H, et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol, 2013; 15, 741-50. doi:  10.1038/ncb2757
[35] Pankiv S, Clausen TH, Lamark T, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem, 2007; 282, 24131-45. doi:  10.1074/jbc.M702824200
[36] Lim J, Lachenmayer ML, Wu S, et al. Proteotoxic stress induces phosphorylation of p62/SQSTM1 by ULK1 to regulate selective autophagic clearance of protein aggregates. PLoS Genet, 2015; 11, e1004987. doi:  10.1371/journal.pgen.1004987
[37] Mcalpine F, Williamson LE, Tooze SA, et al. Regulation of nutrient-sensitive autophagy by uncoordinated 51-like kinases 1 and 2. Autophagy, 2013; 9, 361-73. doi:  10.4161/auto.23066
[38] Petherick KJ, Conway OJ, Mpamhanga C, et al. Pharmacological inhibition of ULK1 kinase blocks mammalian target of rapamycin (mTOR)-dependent autophagy. J Biol Chem, 2015; 290, 11376-83. doi:  10.1074/jbc.C114.627778
[39] Lazarus MB, Shokat KM. Discovery and structure of a new inhibitor scaffold of the autophagy initiating kinase ULK1. Bioorg Med Chem, 2015; 23, 5483-8. doi:  10.1016/j.bmc.2015.07.034
[40] Burman C, Ktistakis NT. Regulation of autophagy by phosphatidylinositol 3-phosphate. FEBS Lett, 2010; 584, 1302-12. doi:  10.1016/j.febslet.2010.01.011
[41] Kroemer G, Marino G, Levine B. Autophagy and the integrated stress response. Mol Cell, 2010; 40, 280-93. doi:  10.1016/j.molcel.2010.09.023
[42] Mizushima N, Kuma A, Kobayashi Y, et al. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J Cell Sci, 2003; 116, 1679-88. doi:  10.1242/jcs.00381
[43] Mizushima N, Yamamoto A, Hatano M, et al. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol, 2001; 152, 657-68. doi:  10.1083/jcb.152.4.657
[44] Sou YS, Waguri S, Iwata J, et al. The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol Biol Cell, 2008; 19, 4762-75. doi:  10.1091/mbc.E08-03-0309
[45] Geng J, Klionsky DJ. The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. 'Protein modifications:beyond the usual suspects' review series. EMBO Rep, 2008; 9, 859-64. doi:  10.1038/embor.2008.163
[46] Otomo C, Metlagel Z, Takaesu G, et al. Structure of the human ATG12~ATG5 conjugate required for LC3 lipidation in autophagy. Nat Struct Mol Biol, 2013; 20, 59-66. doi:  10.1038/nsmb.2431
[47] Young AR, Chan EY, Hu XW, et al. Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J Cell Sci, 2006; 119, 3888-900. doi:  10.1242/jcs.03172
[48] Orsi A, Razi M, Dooley HC, et al. Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Mol Biol Cell, 2012; 23, 1860-73. doi:  10.1091/mbc.E11-09-0746
[49] Pasi F, Fassina L, Mognaschi ME, et al. Pulsed Electromagnetic Field with Temozolomide Can Elicit an Epigenetic Pro-apoptotic Effect on Glioblastoma T98G Cells. Anticancer Res, 2016; 36, 5821-6. doi:  10.21873/anticanres
[50] Jiang DP, Li JH, Zhang J, et al. Long-term electromagnetic pulse exposure induces Abeta deposition and cognitive dysfunction through oxidative stress and overexpression of APP and BACE1. Brain Res, 2016; 1642, 10-9. doi:  10.1016/j.brainres.2016.02.053
[51] Marchesi N, Osera C, Fassina L, et al. Autophagy is modulated in human neuroblastoma cells through direct exposition to low frequency electromagnetic fields. J Cell Physiol, 2014; 229, 1776-86. doi:  10.1002/jcp.24631
[52] Liu K, Zhang G, Wang Z, et al. The protective effect of autophagy on mouse spermatocyte derived cells exposure to 1800MHz radiofrequency electromagnetic radiation. Toxicol Lett, 2014; 228, 216-24. doi:  10.1016/j.toxlet.2014.05.004
[53] Koshkina NV, Briggs K, Palalon F, et al. Autophagy and enhanced chemosensitivity in experimental pancreatic cancers induced by noninvasive radiofrequency field treatment. Cancer, 2014; 120, 480-91. doi:  10.1002/cncr.28453
[54] Curley SA, Palalon F, Sanders KE, et al. The effects of non-invasive radiofrequency treatment and hyperthermia on malignant and nonmalignant cells. Int J Environ Res Public Health, 2014; 11, 9142-53. doi:  10.3390/ijerph110909142
[55] Curley SA, Palalon F, Lu X, et al. Noninvasive radiofrequency treatment effect on mitochondria in pancreatic cancer cells. Cancer, 2014; 120, 3418-25. doi:  10.1002/cncr.28895
[56] Cao H, Xu Z, Liu X, et al. Effect of autophagy on lung cancer cell line A549 by microwave radiation non-thermal effect. J Pract Oncol, 2012; 27, 271-3.
[57] Zuo WQ, Hu YJ, Yang Y, et al. Sensitivity of spiral ganglion neurons to damage caused by mobile phone electromagnetic radiation will increase in lipopolysaccharide-induced inflammation in vitro model. J Neuroinflammation, 2015; 12, 105. doi:  10.1186/s12974-015-0300-1
[58] Golbach LA, Scheer MH, Cuppen JJ, et al. Low-Frequency Electromagnetic Field Exposure Enhances Extracellular Trap Formation by Human Neutrophils through the NADPH Pathway. J Innate Immun, 2015; 7, 459-65. doi:  10.1159/000380764
[59] Tan S, Wang H, Xu X, et al. Study on dose-dependent, frequency-dependent, and accumulative effects of 1.5 GHz and 2.856 GHz microwave on cognitive functions in Wistar rats. Sci Rep, 2017; 7, 10781. doi:  10.1038/s41598-017-11420-9
[60] Nguyen THP, Pham VTH, Baulin V, et al. The effect of a high frequency electromagnetic field in the microwave range on red blood cells. Sci Rep, 2017; 7, 10798. doi:  10.1038/s41598-017-11288-9
[61] Li L, Zhang Q, Tan J, et al. Autophagy and hippocampal neuronal injury. Sleep Breath, 2014; 18, 243-9. doi:  10.1007/s11325-013-0930-4
[62] Gozuacik D, Akkoc Y, Ozturk DG, et al. Autophagy-Regulating microRNAs and Cancer. Front Oncol, 2017; 7, 65. doi:  10.3389/fonc.2017.00065/full
[63] Shahin S, Singh VP, Shukla RK, et al. 2.45 GHz microwave irradiation-induced oxidative stress affects implantation or pregnancy in mice, Mus musculus. Appl Biochem Biotechnol, 2013; 169, 1727-51. doi:  10.1007/s12010-012-0079-9
[64] Campisi A, Gulino M, Acquaviva R, et al. Reactive oxygen species levels and DNA fragmentation on astrocytes in primary culture after acute exposure to low intensity microwave electromagnetic field. Neurosci Lett, 2010; 473, 52-5. doi:  10.1016/j.neulet.2010.02.018
[65] Sokolovic D, Djindjic B, Nikolic J, et al. Melatonin reduces oxidative stress induced by chronic exposure of microwave radiation from mobile phones in rat brain. J Radiat Res, 2008; 49, 579-86. doi:  10.1269/jrr.07077
[66] Ammari M, Lecomte A, Sakly M, et al. Exposure to GSM 900 MHz electromagnetic fields affects cerebral cytochrome c oxidase activity. Toxicology, 2008; 250, 70-4. doi:  10.1016/j.tox.2008.05.019
[67] Friedman J, Kraus S, Hauptman Y, et al. Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies. Biochem J, 2007; 405, 559-68. doi:  10.1042/BJ20061653
[68] Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 2002; 298, 1911-2. doi:  10.1126/science.1072682
[69] Maher P, Schubert D. Signaling by reactive oxygen species in the nervous system. CMLS, 2000; 57, 1287-305. doi:  10.1007/PL00000766
[70] Li L, Tan J, Miao Y, et al. ROS and Autophagy:Interactions and Molecular Regulatory Mechanisms. Cell Mol Neurobiol, 2015; 35, 615-21. doi:  10.1007/s10571-015-0166-x
[71] Bader AG, Brown D, Stoudemire J, et al. Developing therapeutic microRNAs for cancer. Gene Ther, 2011; 18, 1121-6. doi:  10.1038/gt.2011.79
[72] Lanford RE, Hildebrandt-Eriksen ES, Petri A, et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science, 2010; 327, 198-201. doi:  10.1126/science.1178178
[73] Zhao L, Sun C, Xiong L, et al. MicroRNAs:Novel Mechanism Involved in the Pathogenesis of Microwave Exposure on Rats' Hippocampus. J Mol Neurosci, 2014; 53, 222-30. doi:  10.1007/s12031-014-0289-4
[74] Wang P, Liang J, Li Y, et al. Down-regulation of miRNA-30a alleviates cerebral ischemic injury through enhancing beclin 1-mediated autophagy. Neurochem Res, 2014; 39, 1279-91. doi:  10.1007/s11064-014-1310-6
[75] Yang X, Bai F, Xu Y, et al. Intensified Beclin-1 Mediated by Low Expression of Mir-30a-5p Promotes Chemoresistance in Human Small Cell Lung Cancer. Cell Physiol Biochem, 2017; 43, 1126-39. doi:  10.1159/000481754
[76] Guo D, Ma J, Yan L, et al. Down-Regulation of Lncrna MALAT1 Attenuates Neuronal Cell Death Through Suppressing Beclin1-Dependent Autophagy by Regulating Mir-30a in Cerebral Ischemic Stroke. Cell Physiol Biochem, 2017; 43, 182-94. doi:  10.1159/000480337
[77] Chen J, Yu Y, Li S, et al. MicroRNA-30a ameliorates hepatic fibrosis by inhibiting Beclin1-mediated autophagy. J Cell Mol Med, 2017; 21, 3679-92. doi:  10.1111/jcmm.2017.21.issue-12
[78] Xu R, Liu S, Chen H, et al. MicroRNA-30a downregulation contributes to chemoresistance of osteosarcoma cells through activating Beclin-1-mediated autophagy. Oncol Rep, 2016; 35, 1757-63. doi:  10.3892/or.2015.4497
[79] Yang Y, Li Y, Chen X, et al. Exosomal transfer of miR-30a between cardiomyocytes regulates autophagy after hypoxia. J Mol Med (Berl), 2016; 94, 711-24. doi:  10.1007/s00109-016-1387-2
[80] Zhu H, Wu H, Liu X, et al. Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy, 2009; 5, 816-23. doi:  10.4161/auto.9064