[1] Thirsk R, Kuipers A, Mukai C, et al. The space-flight environment:the International Space Station and beyond. CMAJ, 2009; 180, 1216-20. http://www.ncbi.nlm.nih.gov/pubmed/19487390/
[2] Blaber EA, Dvorochkin N, Lee C, et al. Microgravity induces pelvic bone loss through osteoclastic activity, osteocytic osteolysis, and osteoblastic cell cycle inhibition by CDKN1a/p21. PLoS One, 2013; 8, e61372. http://www.ncbi.nlm.nih.gov/pubmed/23637819
[3] Lang T, LeBlanc A, Evans H, et al. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res, 2004; 19, 1006-12. doi:  10.1359/JBMR.040307
[4] Lang TF, Leblanc AD, Evans HJ, et al. Adaptation of the proximal femur to skeletal reloading after long-duration spaceflight. J Bone Miner Res, 2006; 21, 1224-30. doi:  10.1359/jbmr.060509
[5] Orwoll ES, Adler RA, Amin S, et al. Skeletal health in long-duration astronauts:nature, assessment, and management recommendations from the NASA Bone Summit. J Bone Miner Res, 2013; 28, 1243-55. http://www.ncbi.nlm.nih.gov/pubmed/23553962
[6] Benton ER, Benton EV. Space radiation dosimetry in low-Earth orbit and beyond. Nucl Instrum Methods Phys Res B, 2001; 184, 255-94. doi:  10.1016/S0168-583X(01)00748-0
[7] Lloyd SA, Bandstra ER, Travis ND, et al. Spaceflight-relevant types of ionizing radiation and cortical bone:Potential LET effect? Adv Space Res, 2008; 42, 1889-97. doi:  10.1016/j.asr.2008.08.006
[8] Bandstra ER, Pecaut MJ, Anderson ER, et al. Long-term dose response of trabecular bone in mice to proton radiation. Radiat Res, 2008; 169, 607-14. doi:  10.1667/RR1310.1
[9] Hamilton SA, Pecaut MJ, Gridley DS, et al. A murine model for bone loss from therapeutic and space-relevant sources of radiation. J Appl Physiol, 2006; 101, 789-93. doi:  10.1152/japplphysiol.01078.2005
[10] Schreurs AS, Shirazi-Fard Y, Shahnazari M, et al. Dried plum diet protects from bone loss caused by ionizing radiation. Sci Rep, 2016; 6, 21343. https://www.sciencedaily.com/releases/2016/02/160222144336.htm
[11] Dijk DJ, Neri DF, Wyatt JK, et al. Sleep, performance, circadian rhythms, and light-dark cycles during two space shuttle flights. Am J Physiol Regul Integr Comp Physiol, 2001; 281, 1647-64. doi:  10.1152/ajpregu.2001.281.5.R1647
[12] Haus E, Smolensky M. Biological clocks and shift work:circadian dysregulation and potential long-term effects. Cancer Causes Control, 2006; 17, 489-500. doi:  10.1007/s10552-005-9015-4
[13] Wong SN, Halaki M, Chow CM. The periodicity of sleep duration-an infradian rhythm in spontaneous living. Nat Sci Sleep, 2013; 5, 1-6. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3630914/
[14] Baehr EK, Eastman CI, Revelle W, et al. Circadian phase-shifting effects of nocturnal exercise in older compared with young adults. Am J Physiol Regul Integr Comp Physiol, 2003; 284, 1542-50. doi:  10.1152/ajpregu.00761.2002
[15] James FO, Cermakian N, Boivin DB. Circadian rhythms of melatonin, cortisol, and clock gene expression during simulated night shift work. Sleep, 2007; 30, 1427-36. doi:  10.1093/sleep/30.11.1427
[16] Morey-Holton ER, Globus RK. Hindlimb unloading of growing rats:a model for predicting skeletal changes during space flight. Bone, 1998; 22, 83S-8S. http://www.ncbi.nlm.nih.gov/pubmed/9600759
[17] Morey-Holton ER, Globus RK. Hindlimb unloading rodent model:technical aspects. J Appl Physiol, 2002; 92, 1367-77. http://www.ncbi.nlm.nih.gov/pubmed/11895999
[18] Katz I, Li M, Joffe I, et al. Influence of age on cyclosporin A-induced alterations in bone mineral metabolism in the rat in vivo. J Bone Miner Res, 1994; 9, 59-67. http://www.ncbi.nlm.nih.gov/pubmed/8154310
[19] Bahadori AA, Baalen MV, Shavers MR, et al. Dosimetric impacts of microgravity:an analysis of 5th, 50th and 95th percentile male and female astronauts. Phys Med Biol, 2012; 57, 1047-70. http://www.ncbi.nlm.nih.gov/pubmed/22298248
[20] Hashemian SJ, Rismanchi M, Esfahani EN, et al. Effect of calcitriol supplementation and tail suspension on serum biomarkers of bone formation in rats. J Diabetes Metab Disord, 2015; 14, 14. doi:  10.1186/s40200-015-0142-5
[21] Lloyd SA, Bandstra ER, Willey JS, et al. Effect of proton irradiation followed by hindlimb unloading on bone in mature mice:a model of long-duration spaceflight. Bone, 2012; 51, 756-64. doi:  10.1016/j.bone.2012.07.001
[22] Sibonga JD. Spaceflight-induced bone loss:is there an osteoporosis risk? Curr Osteoporos Rep, 2013; 11, 92-8. https://www.researchgate.net/profile/Jean_Sibonga/publication/236128839_Spaceflight-induced_Bone_Loss_Is_there_an_Osteoporosis_Risk/links/564b64c308ae020ae9f80ad3.pdf
[23] Bouxsein ML. Mechanisms of osteoporosis therapy:a bone strength perspective. Clin Cornerstone, 2003; Suppl 2, 13-21. https://www.sciencedirect.com/science/article/pii/S1098359703900433
[24] Alwood JS, Yumoto K, Mojarrab R, et al. Heavy ion irradiation and unloading effects on mouse lumbar vertebral microarchitecture, mechanical properties and tissue stresses. Bone, 2010; 47, 248-55. doi:  10.1016/j.bone.2010.05.004
[25] Zaichkina SI, Rozanova OM, Aptikaeva GF, et al. Peculiarities of the effect of low-dose-rate radiation simulating high-altitude flight conditions on mice in vivo. Radiat Environ Biophys, 2007; 46, 131-5. doi:  10.1007/s00411-007-0107-2
[26] Kondo H, Searby ND, Mojarrab R, et al. Total-body irradiation of postpubertal mice with (137)Cs acutely compromises the microarchitecture of cancellous bone and increases osteoclasts. Radiat Res, 2009; 171, 283-9. doi:  10.1667/RR1463.1
[27] Xu D, Zhao X, Li Y, et al. The combined effects of X-ray radiation and hindlimb suspension on bone loss. J Radiat Res, 2014; 55, 720-5. doi:  10.1093/jrr/rru014
[28] Zelinski EL, Deibel SH, McDonald RJ. The trouble with circadian clock dysfunction:multiple deleterious effects on the brain and body. Neurosci Biobehav Rev, 2014; 40, 80-101. doi:  10.1016/j.neubiorev.2014.01.007
[29] Yang HJ, Zhang Y, Wang ZL, et al. Increased Chondrocyte Apoptosis in Kashin-Beck Disease and Rats Induced by T-2 Toxin and Selenium Deficiency. Biomed Environ Sci, 2017; 30, 351-62. https://www.sciencedirect.com/science/article/pii/S0895398817300624
[30] Yan D, Liu TX, Liu BY, et al. Effects of Structural Changes in Subchondral Bone on Articular Cartilage in a Beagle Dog Model. Biomed Environ Sci, 2017; 30, 194-203. https://www.sciencedirect.com/science/article/pii/S0895398817300272
[31] Marie PJ. Strontium ranelate:a physiological approach for optimizing bone formation and resorption. Bone, 2006; 38, 10-4. https://www.sciencedirect.com/science/article/pii/S8756328205005284
[32] Gombos GC, Bajsz V, Pek E, et al. Direct effects of physical training on markers of bone metabolism and serum sclerostin concentrations in older adults with low bone mass. BMC Musculoskelet Disord, 2016; 17, 254. doi:  10.1186/s12891-016-1109-5
[33] Halling Linder C, Ek-Rylander B, Krumpel M, et al. Bone Alkaline Phosphatase and Tartrate-Resistant Acid Phosphatase:Potential Co-regulators of Bone Mineralization. Calcif Tissue Int, 2017; 101, 92-101. doi:  10.1007/s00223-017-0259-2
[34] Lumachi F, Orlando R, Fallo F, et al. Relationship between bone formation markers bone alkaline phosphatase, osteocalcin and amino-terminal propeptide of type Ⅰ collagen and bone mineral density in elderly men. Preliminary results. In Vivo, 2012; 26, 1041-4. http://www.ncbi.nlm.nih.gov/pubmed/23160690
[35] Amblard D, Lafage-Proust MH, Laib A, et al. Tail suspension induces bone loss in skeletally mature mice in the C57BL/6J strain but not in the C3H/HeJ strain. J Bone Miner Res, 2003; 18, 561-9. http://med.wanfangdata.com.cn/Paper/Detail?id=PeriodicalPaper_JJ021291147
[36] Jia B, Xie L, Zheng Q, et al. A hypomagnetic field aggravates bone loss induced by hindlimb unloading in rat femurs. PLoS One, 2014; 9, e105604. doi:  10.1371/journal.pone.0105604
[37] Magni P, Macchi C, Sirtori CR, et al. Osteocalcin as a potential risk biomarker for cardiovascular and metabolic diseases. Clin Chem Lab Med, 2016; 54, 1579-87. http://www.researchgate.net/publication/293825525_Osteocalcin_as_a_potential_risk_biomarker_for_cardiovascular_and_metabolic_diseases
[38] Tsao YT, Huang YJ, Wu HH, et al. Osteocalcin mediates biomineralization during osteogenic maturation in human mesenchymal stromal cells. Int J Mol Sci, 2017; 18. doi:  10.1006/cbir.1994.1088/full
[39] Sakata T, Wang Y, Halloran BP, et al. Skeletal unloading induces resistance to insulin-like growth factor-I (IGF-I) by inhibiting activation of the IGF-I signaling pathways. J Bone Miner Res, 2004; 19, 436-46. http://www.ncbi.nlm.nih.gov/pubmed/15040832?dopt=AbstractPlus
[40] Costa AG, Bilezikian JP. Bone turnover markers in primary hyperparathyroidism. J Clin Densitom, 2013; 16, 22-7. doi:  10.1016/j.jocd.2012.11.004
[41] Kuo TR, Chen CH. Bone biomarker for the clinical assessment of osteoporosis:recent developments and future perspectives. Biomark Res, 2017; 5, 18. doi:  10.1186/s40364-017-0097-4