Volume 34 Issue 9
Sep.  2021
Turn off MathJax
Article Contents

NIU Pei Hua, ZHAO Xiang, LU Rou Jian, ZHAO Li, HUANG Bao Ying, YE Fei, WANG Da Yan, TAN Wen Jie. Full-Length Genome Sequencing of SARS-CoV-2 Directly from Clinical and Environmental Samples Based on the Multiplex Polymerase Chain Reaction Method[J]. Biomedical and Environmental Sciences, 2021, 34(9): 725-728. doi: 10.3967/bes2021.100
Citation: NIU Pei Hua, ZHAO Xiang, LU Rou Jian, ZHAO Li, HUANG Bao Ying, YE Fei, WANG Da Yan, TAN Wen Jie. Full-Length Genome Sequencing of SARS-CoV-2 Directly from Clinical and Environmental Samples Based on the Multiplex Polymerase Chain Reaction Method[J]. Biomedical and Environmental Sciences, 2021, 34(9): 725-728. doi: 10.3967/bes2021.100

Full-Length Genome Sequencing of SARS-CoV-2 Directly from Clinical and Environmental Samples Based on the Multiplex Polymerase Chain Reaction Method

doi: 10.3967/bes2021.100
Funds:  This work was supported by the National Key Research and Development Program of China [2016YFD0500301, 2020YFC0840900]
More Information
  • Author Bio:

    NIU Pei Hua, female, born in 1985, PhD, majoring in medical virology research

  • Corresponding author: TAN Wen Jie, Tel/Fax: 86-10-58900878, E-mail: tanwj28@163.com
  • Received Date: 2021-03-05
  • Accepted Date: 2021-07-27
  • 加载中
  • [1] Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 2020; 395, 565−74. doi:  10.1016/S0140-6736(20)30251-8
    [2] Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med, 2020; 382, 727−33. doi:  10.1056/NEJMoa2001017
    [3] Ksiazek TG, Erdman D, Goldsmith CS, et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med, 2003; 348, 1953−66. doi:  10.1056/NEJMoa030781
    [4] Zaki AM, van Boheemen S, Bestebroer TM, et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med, 2012; 367, 1814−20. doi:  10.1056/NEJMoa1211721
    [5] Gardy J, Loman NJ, Rambaut A. Real-time digital pathogen surveillance - the time is now. Genome Biol, 2015; 16, 155. doi:  10.1186/s13059-015-0726-x
    [6] Quick J, Grubaugh ND, Pullan ST, et al. Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples. Nat Protoc, 2017; 12, 1261−76. doi:  10.1038/nprot.2017.066
    [7] Wang W, Xu Y, Gao R, et al. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA, 2020; 323, 1843−4.
    [8] To KK, Tsang OT, Yip CC, et al. Consistent Detection of 2019 Novel Coronavirus in Saliva. Clin Infect Dis, 2020; 71, 841−3. doi:  10.1093/cid/ciaa149
    [9] Faria NR, Sabino EC, Nunes MR, et al. Mobile real-time surveillance of Zika virus in Brazil. Genome Med, 2016; 8, 97. doi:  10.1186/s13073-016-0356-2
  • 21084.pdf
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)  / Tables(2)

Article Metrics

Article views(558) PDF downloads(40) Cited by()

Proportional views
Related

Full-Length Genome Sequencing of SARS-CoV-2 Directly from Clinical and Environmental Samples Based on the Multiplex Polymerase Chain Reaction Method

doi: 10.3967/bes2021.100
Funds:  This work was supported by the National Key Research and Development Program of China [2016YFD0500301, 2020YFC0840900]
  • Author Bio:

  • Corresponding author: TAN Wen Jie, Tel/Fax: 86-10-58900878, E-mail: tanwj28@163.com
NIU Pei Hua, ZHAO Xiang, LU Rou Jian, ZHAO Li, HUANG Bao Ying, YE Fei, WANG Da Yan, TAN Wen Jie. Full-Length Genome Sequencing of SARS-CoV-2 Directly from Clinical and Environmental Samples Based on the Multiplex Polymerase Chain Reaction Method[J]. Biomedical and Environmental Sciences, 2021, 34(9): 725-728. doi: 10.3967/bes2021.100
Citation: NIU Pei Hua, ZHAO Xiang, LU Rou Jian, ZHAO Li, HUANG Bao Ying, YE Fei, WANG Da Yan, TAN Wen Jie. Full-Length Genome Sequencing of SARS-CoV-2 Directly from Clinical and Environmental Samples Based on the Multiplex Polymerase Chain Reaction Method[J]. Biomedical and Environmental Sciences, 2021, 34(9): 725-728. doi: 10.3967/bes2021.100
  • The new coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is spreading worldwide with the number of confirmed cases increasing dramatically[1, 2]. Coronaviruses have the largest genome among RNA viruses and have caused two major outbreaks[3, 4]. The new coronavirus (SARS-CoV-2) is the third coronavirus spread globally in the past 17 years. According to the World Health Organization, SARS-CoV-2 has affected more than 155.6 millon patients in 222 countries as of 6 May 2021 and has become a major global health concern (https://www.who.int/emergencies/diseases/novel-coronavirus-2019).

    Rapid genome sequencing of the virus directly from clinical and environmental specimens is important for real-time genomic surveillance in managing virus outbreaks[5]. Genomic sequencing directly from clinical and environmental samples is challenging owing to low sensitivity. Therefore, we designed a multiplex PCR method for virus genome sequencing of SARS-CoV-2 directly from clinical and environmental samples with reference to the whole-genome sequencing method for Zika virus[6]. SARS-CoV-2 can be detected in the bronchoalveolar lavage fluid, sputum, nasal swab, throat swab, feces, blood, and saliva[7, 8]. Hence, in this study, we validated the method with different types of these samples.

    The complete protocol is schematically represented in Figure 1. The first step of the protocol was to design overlapping primer pairs to cover the entire genome (Supplementary Table S1 available in www.besjournal.com). The multiplex PCR comprised a set of 102 oligonucleotide primer pairs and the amplicons generated by the primer pairs spanned the target genome (Figure 1A). The subsequent step was the amplification and sequencing of fragments that were performed with Nanopore GridION X5 to obtain reads of 400 bp or Illumina paired-end library protocol, allowing reads of approximately 300 bp. During genome sequencing, some amplicons were over-sequenced, while others were under-sequenced (Figure 2). This occurs owing to differences in the amplification process and genome content.

    Figure 1.  Sequencing schemes employed in the study. (A) Schematic showing expected amplicon products for each pool of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome. We designed and optimized polymerase chain reaction (PCR) primers to generate amplicons that would span the SARS-CoV-2 genome. We designed 102 primer pairs, which covered 100% of the SARS-CoV-2 genome. The predicted forward primers (blue arrows) and reverse primers (red arrows) scaled according to the SARS-CoV-2 virus coordinates. (B) Workflow of the multiplex PCR method for sequencing SARS-CoV-2 directly from clinical specimens.

    Primer namePool 1/2Sequences (5'→3')
    SARS-CoV-2_1_ForwardPool_1ATTAAAGGTTTATACCTTCCCAGGTA
    SARS-CoV-2_1_ReversePool_1CAGCCACACAGATTTTAAAGTTCGT
    SARS-CoV-2_2_ForwardPool_2CCAGGTAACAAACCAACCAACTT
    SARS-CoV-2_2_ReversePool_2GCCACACAGATTTTAAAGTTCGTTT
    SARS-CoV-2_3_ForwardPool_1ACCAACCAACTTTCGATCTCTTGT
    SARS-CoV-2_3_ReversePool_1CATCTTTAAGATGTTGACGTGCCTC
    SARS-CoV-2_4_ForwardPool_2CTGTTTTACAGGTTCGCGACGT
    SARS-CoV-2_4_ReversePool_2TAAGGATCAGTGCCAAGCTCGT
    SARS-CoV-2_5_ForwardPool_1CGGTAATAAAGGAGCTGGTGGC
    SARS-CoV-2_5_ReversePool_1AAGGTGTCTGCAATTCATAGCTCT
    SARS-CoV-2_6_ForwardPool_2GGTGTATACTGCTGCCGTGAAC
    SARS-CoV-2_6_ReversePool_2CACAAGTAGTGGCACCTTCTTTAGT
    SARS-CoV-2_7_ForwardPool_1TGGTGAAACTTCATGGCAGACG
    SARS-CoV-2_7_ReversePool_1ATTGATGTTGACTTTCTCTTTTTGGAGT
    SARS-CoV-2_8_ForwardPool_2GGTGTTGTTGGAGAAGGTTCCG
    SARS-CoV-2_8_ReversePool_2TAGCGGCCTTCTGTAAAACACG
    SARS-CoV-2_9_ForwardPool_1ATCAGAGGCTGCTCGTGTTGTA
    SARS-CoV-2_9_ReversePool_1TGCACAGGTGACAATTTGTCCA
    SARS-CoV-2_10_ForwardPool_2AGAGTTTCTTAGAGACGGTTGGGA
    SARS-CoV-2_10_ReversePool_2GCTTCAACAGCTTCACTAGTAGGT
    SARS-CoV-2_11_ForwardPool_1ACTGGTGATTTACAACCATTAGAACAA
    SARS-CoV-2_11_ReversePool_1CACAGGCGAACTCATTTACTTCTGTA
    SARS-CoV-2_12_ForwardPool_2TGAGAAGTGCTCTGCCTATACAGT
    SARS-CoV-2_12_ReversePool_2TCATCTAACCAATCTTCTTCTTGCTCT
    SARS-CoV-2_13_ForwardPool_1GGAATTTGGTGCCACTTCTGCT
    SARS-CoV-2_13_ReversePool_1TCATCAGATTCAACTTGCATGGCA
    SARS-CoV-2_14_ForwardPool_2AAACATGGAGGAGGTGTTGCAG
    SARS-CoV-2_14_ReversePool_2TTCACTCTTCATTTCCAAAAAGCTTGA
    SARS-CoV-2_15_ForwardPool_1TCGCACAAATGTCTACTTAGCTGT
    SARS-CoV-2_15_ReversePool_1ACCACAGCAGTTAAAACACCCT
    SARS-CoV-2_16_ForwardPool_2CATCCAGATTCTGCCACTCTTGT
    SARS-CoV-2_16_ReversePool_2AGTTTCCACACAGACAGGCATT
    SARS-CoV-2_17_ForwardPool_1ACAGTGCTTAAAAAGTGTAAAAGTGCC
    SARS-CoV-2_17_ReversePool_1AACAGAAACTGTAGCTGGCACT
    SARS-CoV-2_18_ForwardPool_2AATTTGGAAGAAGCTGCTCGGT
    SARS-CoV-2_18_ReversePool_2CACAACTTGCGTGTGGAGGTTA
    SARS-CoV-2_19_ForwardPool_1CTTCTTTCTTTGAGAGAAGTGAGGACT
    SARS-CoV-2_19_ReversePool_1TTTGTTGGAGTGTTAACAATGCAGT
    SARS-CoV-2_20_ForwardPool_2ACAACTGTTATCTTGCCACTGCAT
    SARS-CoV-2_20_ReversePool_2AAATTGTTCATAAGAAAGTGTGCCC
    SARS-CoV-2_21_ForwardPool_1GCTGTTATGTACATGGGCACACT
    SARS-CoV-2_21_ReversePool_1TGTCCAACTTAGGGTCAATTTCTGT
    SARS-CoV-2_22_ForwardPool_2ACAAAGAAAACAGTTACACAACAACCA
    SARS-CoV-2_22_ReversePool_2ACGTGGCTTTATTAGTTGCATTGTT
    SARS-CoV-2_23_ForwardPool_1TGGCTATTGATTATAAACACTACACACCC
    SARS-CoV-2_23_ReversePool_1TAGATCTGTGTGGCCAACCTCT
    SARS-CoV-2_24_ForwardPool_2ACTACCGAAGTTGTAGGAGACATTATACT
    SARS-CoV-2_24_ReversePool_2ACAGTATTCTTTGCTATAGTAGTCGGC
    SARS-CoV-2_25_ForwardPool_1ACAACTACTAACATAGTTACACGGTGT
    SARS-CoV-2_25_ReversePool_1ACCAGTACAGTAGGTTGCAATAGTG
    SARS-CoV-2_26_ForwardPool_2AGGCATGCCTTCTTACTGTACTG
    SARS-CoV-2_26_ReversePool_2ACATTCTAACCATAGCTGAAATCGGG
    SARS-CoV-2_27_ForwardPool_1GCAATTGTTTTTCAGCTATTTTGCAGT
    SARS-CoV-2_27_ReversePool_1ACTGTAGTGACAAGTCTCTCGCA
    SARS-CoV-2_28_ForwardPool_2TTGTGATACATTCTGTGCTGGTAGT
    SARS-CoV-2_28_ReversePool_2TCCGCACTATCACCAACATCAG
    SARS-CoV-2_29_ForwardPool_1ACTACAGTCAGCTTATGTGTCAACC
    SARS-CoV-2_29_ReversePool_1AATACAAGCACCAAGGTCACGG
    SARS-CoV-2_30_ForwardPool_2ACATAGAAGTTACTGGCGATAGTTGT
    SARS-CoV-2_30_ReversePool_2TGTTTAGACATGACATGAACAGGTGT
    SARS-CoV-2_31_ForwardPool_1ACTTGTGTTCCTTTTTGTTGCTGC
    SARS-CoV-2_31_ReversePool_1AGTGTACTCTATAAGTTTTGATGGTGTGT
    SARS-CoV-2_32_ForwardPool_2GCACAACTAATGGTGACTTTTTGCA
    SARS-CoV-2_32_ReversePool_2ACCACTAGTAGATACACAAACACCAG
    SARS-CoV-2_33_ForwardPool_1TTCTGAGTACTGTAGGCACGGC
    SARS-CoV-2_33_ReversePool_1ACAGAATAAACACCAGGTAAGAATGAGT
    SARS-CoV-2_34_ForwardPool_2TGGTGAATACAGTCATGTAGTTGCC
    SARS-CoV-2_34_ReversePool_2AGCACATCACTACGCAACTTTAGA
    SARS-CoV-2_35_ForwardPool_1ACTTTTGAAGAAGCTGCGCTGT
    SARS-CoV-2_35_ReversePool_1TGGACAGTAAACTACGTCATCAAGC
    SARS-CoV-2_36_ForwardPool_2TCCCATCTGGTAAAGTTGAGGGT
    SARS-CoV-2_36_ReversePool_2AGTGAAATTGGGCCTCATAGCA
    SARS-CoV-2_37_ForwardPool_1TGTTCGCATTCAACCAGGACAG
    SARS-CoV-2_37_ReversePool_1ACTTCATAGCCACAAGGTTAAAGTCA
    SARS-CoV-2_38_ForwardPool_2TTAGCTTGGTTGTACGCTGCTG
    SARS-CoV-2_38_ReversePool_2GAACAAAGACCATTGAGTACTCTGGA
    SARS-CoV-2_39_ForwardPool_1ACACACCACTGGTTGTTACTCAC
    SARS-CoV-2_39_ReversePool_1GTCCACACTCTCCTAGCACCAT
    SARS-CoV-2_40_ForwardPool_2ACTGTGTTATGTATGCATCAGCTGT
    SARS-CoV-2_40_ReversePool_2CACCAAGAGTCAGTCTAAAGTAGCG
    SARS-CoV-2_41_ForwardPool_1AGTATTGCCCTATTTTCTTCATAACTGGT
    SARS-CoV-2_41_ReversePool_1TGTAACTGGACACATTGAGCCC
    SARS-CoV-2_42_ForwardPool_2TGCACATCAGTAGTCTTACTCTCAGT
    SARS-CoV-2_42_ReversePool_2CATGGCTGCATCACGGTCAAAT
    SARS-CoV-2_43_ForwardPool_1GTTCCCTTCCATCATATGCAGCT
    SARS-CoV-2_43_ReversePool_1TGGTATGACAACCATTAGTTTGGCT
    SARS-CoV-2_44_ForwardPool_2TGCAAGAGATGGTTGTGTTCCC
    SARS-CoV-2_44_ReversePool_2CCTACCTCCCTTTGTTGTGTTGT
    SARS-CoV-2_45_ForwardPool_1TACGACAGATGTCTTGTGCTGC
    SARS-CoV-2_45_ReversePool_1AGCAGCATCTACAGCAAAAGCA
    SARS-CoV-2_46_ForwardPool_2TGCCACAGTACGTCTACAAGCT
    SARS-CoV-2_46_ReversePool_2AACCTTTCCACATACCGCAGAC
    SARS-CoV-2_47_ForwardPool_1CCTGTGGGTTTTACACTTAAAAACA
    SARS-CoV-2_47_ReversePool_1AATTGTTTCTTCATGTTGGTAGTTAGAG
    SARS-CoV-2_48_ForwardPool_2TGTCGCTTCCAAGAAAAGGACG
    SARS-CoV-2_48_ReversePool_2CACGTTCACCTAAGTTGGCGTA
    SARS-CoV-2_49_ForwardPool_1AGGACTGGTATGATTTTGTAGAAAACCC
    SARS-CoV-2_49_ReversePool_1AATAACGGTCAAAGAGTTTTAACCTCTC
    SARS-CoV-2_50_ForwardPool_2TGTTGACACTGACTTAACAAAGCCT
    SARS-CoV-2_50_ReversePool_2TAGATTACCAGAAGCAGCGTGC
    SARS-CoV-2_51_ForwardPool_1AGGAATTACTTGTGTATGCTGCTGA
    SARS-CoV-2_51_ReversePool_1TGACGATGACTTGGTTAGCATTAATACA
    SARS-CoV-2_52_ForwardPool_2GTTGATAAGTACTTTGATTGTTACGATGGT
    SARS-CoV-2_52_ReversePool_2TAACATGTTGTGCCAACCACCA
    SARS-CoV-2_53_ForwardPool_1TCAATAGCCGCCACTAGAGGAG
    SARS-CoV-2_53_ReversePool_1AGTGCATTAACATTGGCCGTGA
    SARS-CoV-2_54_ForwardPool_2CATCAGGAGATGCCACAACTGC
    SARS-CoV-2_54_ReversePool_2GTTGAGAGCAAAATTCATGAGGTCC
    SARS-CoV-2_55_ForwardPool_1AGCAAAATGTTGGACTGAGACTGA
    SARS-CoV-2_55_ReversePool_1AGCCTCATAAAACTCAGGTTCCC
    SARS-CoV-2_56_ForwardPool_2TGAGTTAACAGGACACATGTTAGACA
    SARS-CoV-2_56_ReversePool_2AACCAAAAACTTGTCCATTAGCACA
    SARS-CoV-2_57_ForwardPool_1ACTCAACTTTACTTAGGAGGTATGAGCT
    SARS-CoV-2_57_ReversePool_1GGTGTACTCTCCTATTTGTACTTTACTGT
    SARS-CoV-2_58_ForwardPool_2ACCTAGACCACCACTTAACCGA
    SARS-CoV-2_58_ReversePool_2ACACTATGCGAGCAGAAGGGTA
    SARS-CoV-2_59_ForwardPool_1ATTCTACACTCCAGGGACCACC
    SARS-CoV-2_59_ReversePool_1GTAATTGAGCAGGGTCGCCAAT
    SARS-CoV-2_60_ForwardPool_2TGATTTGAGTGTTGTCAATGCCAGA
    SARS-CoV-2_60_ReversePool_2CTTTTCTCCAAGCAGGGTTACGT
    SARS-CoV-2_61_ForwardPool_1TCACGCATGATGTTTCATCTGCA
    SARS-CoV-2_61_ReversePool_1AAGAGTCCTGTTACATTTTCAGCTTG
    SARS-CoV-2_62_ForwardPool_2TGATAGAGACCTTTATGACAAGTTGCA
    SARS-CoV-2_62_ReversePool_2GGTACCAACAGCTTCTCTAGTAGC
    SARS-CoV-2_63_ForwardPool_1TGTTTATCACCCGCGAAGAAGC
    SARS-CoV-2_63_ReversePool_1ATCACATAGACAACAGGTGCGC
    SARS-CoV-2_64_ForwardPool_2GGCACATGGCTTTGAGTTGACA
    SARS-CoV-2_64_ReversePool_2GTTGAACCTTTCTACAAGCCGC
    SARS-CoV-2_65_ForwardPool_1TGTTAAGCGTGTTGACTGGACT
    SARS-CoV-2_65_ReversePool_1ACAAACTGCCACCATCACAACC
    SARS-CoV-2_66_ForwardPool_2TCGATAGATATCCTGCTAATTCCATTGT
    SARS-CoV-2_66_ReversePool_2AGTCTTGTAAAAGTGTTCCAGAGGT
    SARS-CoV-2_67_ForwardPool_1GCTGGCTTTAGCTTGTGGGTTT
    SARS-CoV-2_67_ReversePool_1TGTCAGTCATAGAACAAACACCAATAGT
    SARS-CoV-2_68_ForwardPool_2GGGTGTGGACATTGCTGCTAAT
    SARS-CoV-2_68_ReversePool_2TCAATTTCCATTTGACTCCTGGGT
    SARS-CoV-2_69_ForwardPool_1GTTGTCCAACAATTACCTGAAACTTACT
    SARS-CoV-2_69_ReversePool_1CAACCTTAGAAACTACAGATAAATCTTGGG
    SARS-CoV-2_70_ForwardPool_2ACAGGTTCATCTAAGTGTGTGTGT
    SARS-CoV-2_70_ReversePool_2CTCCTTTATCAGAACCAGCACCA
    SARS-CoV-2_71_ForwardPool_1TGTCGCAAAATATACTCAACTGTGTCA
    SARS-CoV-2_71_ReversePool_1TCTTTATAGCCACGGAACCTCCA
    SARS-CoV-2_72_ForwardPool_2ACAAAAGAAAATGACTCTAAAGAGGGTTT
    SARS-CoV-2_72_ReversePool_2TGACCTTCTTTTAAAGACATAACAGCAG
    SARS-CoV-2_73_ForwardPool_1ACAAATCCAATTCAGTTGTCTTCCTATTC
    SARS-CoV-2_73_ReversePool_1TGGAAAAGAAAGGTAAGAACAAGTCCT
    SARS-CoV-2_74_ForwardPool_2ACACGTGGTGTTTATTACCCTGAC
    SARS-CoV-2_74_ReversePool_2ACTCTGAACTCACTTTCCATCCAAC
    SARS-CoV-2_75_ForwardPool_1CAATTTTGTAATGATCCATTTTTGGGTGT
    SARS-CoV-2_75_ReversePool_1CACCAGCTGTCCAACCTGAAGA
    SARS-CoV-2_76_ForwardPool_2ACATCACTAGGTTTCAAACTTTACTTGC
    SARS-CoV-2_76_ReversePool_2GCAACACAGTTGCTGATTCTCTTC
    SARS-CoV-2_77_ForwardPool_1AGAGTCCAACCAACAGAATCTATTGT
    SARS-CoV-2_77_ReversePool_1ACCACCAACCTTAGAATCAAGATTGT
    SARS-CoV-2_78_ForwardPool_2GGCAAACTGGAAAGATTGCTGA
    SARS-CoV-2_78_ReversePool_2TTGAAATTGACACATTTGTTTTTAACC
    SARS-CoV-2_79_ForwardPool_1CCAGCAACTGTTTGTGGACCTA
    SARS-CoV-2_79_ReversePool_1CAGCCCCTATTAAACAGCCTGC
    SARS-CoV-2_80_ForwardPool_2CAACTTACTCCTACTTGGCGTGT
    SARS-CoV-2_80_ReversePool_2TGTGTACAAAAACTGCCATATTGCA
    SARS-CoV-2_81_ForwardPool_1GTGGTGATTCAACTGAATGCAGC
    SARS-CoV-2_81_ReversePool_1CATTTCATCTGTGAGCAAAGGTGG
    SARS-CoV-2_82_ForwardPool_2TTGCCTTGGTGATATTGCTGCT
    SARS-CoV-2_82_ReversePool_2TGGAGCTAAGTTGTTTAACAAGCG
    SARS-CoV-2_83_ForwardPool_1GCACTTGGAAAACTTCAAGATGTGG
    SARS-CoV-2_83_ReversePool_1GTGAAGTTCTTTTCTTGTGCAGGG
    SARS-CoV-2_84_ForwardPool_2GGGCTATCATCTTATGTCCTTCCCT
    SARS-CoV-2_84_ReversePool_2TGCCAGAGATGTCACCTAAATCAA
    SARS-CoV-2_85_ForwardPool_1TCCTTTGCAACCTGAATTAGACTCA
    SARS-CoV-2_85_ReversePool_1TTTGACTCCTTTGAGCACTGGC
    SARS-CoV-2_86_ForwardPool_2TGCTGTAGTTGTCTCAAGGGCT
    SARS-CoV-2_86_ReversePool_2AGGTGTGAGTAAACTGTTACAAACAAC
    SARS-CoV-2_87_ForwardPool_1ACTAGCACTCTCCAAGGGTGTT
    SARS-CoV-2_87_ReversePool_1ACACAGTCTTTTACTCCAGATTCCC
    SARS-CoV-2_88_ForwardPool_2TCAGGTGATGGCACAACAAGTC
    SARS-CoV-2_88_ReversePool_2ACGAAAGCAAGAAAAAGAAGTACGC
    SARS-CoV-2_89_ForwardPool_1CGACTACTAGCGTGCCTTTGTA
    SARS-CoV-2_89_ReversePool_1ACTAGGTTCCATTGTTCAAGGAGC
    SARS-CoV-2_90_ForwardPool_2CCATGGCAGATTCCAACGGTAC
    SARS-CoV-2_90_ReversePool_2TGGTCAGAATAGTGCCATGGAGT
    SARS-CoV-2_91_ForwardPool_1TCTTGTAGGCTTGATGTGGCT
    SARS-CoV-2_91_ReversePool_1TGCTACTGGAATGGTCTGTGTTTA
    SARS-CoV-2_92_ForwardPool_2ACACAGACCATTCCAGTAGCAGT
    SARS-CoV-2_92_ReversePool_2TGAAATGGTGAATTGCCCTCGT
    SARS-CoV-2_93_ForwardPool_1TCACTACCAAGAGTGTGTTAGAGGT
    SARS-CoV-2_93_ReversePool_1TTCAAGTGAGAACCAAAAGATAATAAGCA
    SARS-CoV-2_94_ForwardPool_2TTTGTGCTTTTTAGCCTTTCTGCT
    SARS-CoV-2_94_ReversePool_2AGGTTCCTGGCAATTAATTGTAAAAGG
    SARS-CoV-2_95_ForwardPool_1TGAGGCTGGTTCTAAATCACCCA
    SARS-CoV-2_95_ReversePool_1AGGTCTTCCTTGCCATGTTGAG
    SARS-CoV-2_96_ForwardPool_2GGCCCCAAGGTTTACCCAATAA
    SARS-CoV-2_96_ReversePool_2TTTGGCAATGTTGTTCCTTGAGG
    SARS-CoV-2_97_ForwardPool_1TGAGGGAGCCTTGAATACACCA
    SARS-CoV-2_97_ReversePool_1CAGTACGTTTTTGCCGAGGCTT
    SARS-CoV-2_98_ForwardPool_2GCCAACAACAACAAGGCCAAAC
    SARS-CoV-2_98_ReversePool_2TAGGCTCTGTTGGTGGGAATGT
    SARS-CoV-2_99_ForwardPool_1TGGATGACAAAGATCCAAATTTCAAAGA
    SARS-CoV-2_99_ReversePool_1ACACACTGATTAAAGATTGCTATGTGAG
    SARS-CoV-2_100_ForwardPool_2AACAATTGCAACAATCCATGAGCA
    SARS-CoV-2_100_ReversePool_2TTCTCCTAAGAAGCTATTAAAATCACATGG
    SARS-CoV-2_101_ForwardPool_1CTCACATAGCAATCTTTAATCAGTGTG
    SARS-CoV-2_101_ReversePool_1GAGAGCTGCCTATATGGAAGAGC
    SARS-CoV-2_102_ForwardPool_2TTTGTCATTCTCCTAAGAAGCTATTAA
    SARS-CoV-2_102_ReversePool_2CCTAAGAAGCTATTAAAATCACATGGG

    Table S1.  The primer sequences of SARS-CoV-2 genome

    Figure 2.  Study of the six diluted strains using the multiplex polymerase chain reaction sequencing method on a Nanopore GridION X5. (A) Analysis of the severe acute respiratory syndrome coronavirus 2 genome assembly at various read depths. The longest contiguous sequence produced at each read depth as a fraction of the full genome length of six diluted samples is shown. (B) Summary of statistical analysis for the sequencing results of six strains.

    We evaluated the sensitivity of the multiplex PCR sequencing method using a 10-fold gradient dilution of the reference strain (EPI_ISL_402119). The sequencing results for Nanopore GridION X5 showed that the mapping reads of six gradient dilution samples against the SARS-CoV-2 reference (EPI_ISL_402119) were 3,733.734 (99.71%), 3,639.845 (99.73%), 3,819.822 (99.65%), 2,934.107 (99.27%), 682.764 (91.12%), and 55.617 (44.7%), respectively (Figure 2B). We identified that as the cycle threshold (Ct) value increased, the percentage of SARS-CoV-2 reads and the percentage of SARS-CoV-2 genome coverage showed a downward trend (Figure 2A). Furthermore, when the Ct value was < 37, the coverage of the SARS-CoV-2 genome was > 95%. Interestingly, when the Ct value was > 40, the coverage of the SARS-CoV-2 genome was < 50%. The median depth and interquartile range (IQR) of coverage of all samples are listed in Figure 2B, whereas the results on the Illumina MiSeq platform are not presented.

    In this study, we used 14 different types of clinical and environmental specimens, including bronchoalveolar lavage fluid, sputum, nasal swabs, throat swabs, and feces samples, from patients infected with the new coronavirus and environmental samples. An in-depth summary, including detailed information on sequence reads, depth distributions, and genome coverage per sample, of the outputs from all samples is presented in Table 1. In comparison with previous studies and despite the long genome of the virus, sequencing of the SARS-CoV-2 genome was very specific. The number of reads that mapped against the SARS-CoV-2 sequence was very high (> 96% for 10 of the samples), revealing that the primer design and the biological protocol led to some noise in the sequencing data. A total of 11 full-length or near-full-length SARS-CoV-2 genomes (> 99% genome coverage) were obtained from 14 libraries.

    Sample nameSample typeCt valueTotal readsSARS-CoV-2 reads SARS-CoV-2 (%)Coverage (%)Median depth [IQR]a
    hCoV-19_Sample1Alveolar lavage fluid27.431,272,7721,255,24998.6299.855,298 [4,701]
    hCoV-19_Sample2Alveolar lavage fluid31.711,789,5081,735,20196.9799.835,951 [6,161]
    hCoV-19_Sample3Sputum38.00598,376399,34366.7477.1530 [1,041]
    hCoV-19_Sample4Sputum19.061,865,1901,837,25498.5099.815,492 [9,965]
    hCoV-19_Sample5Sputum25.142,678,1802,628,75698.1599.878,832 [6,412]
    hCoV-19_Sample6Nasal swabs33.251,279,0201,233,59596.4599.824,563 [5,926]
    hCoV-19_Sample7Throat swabs30.682,031,0021,982,59297.6299.837,609 [8,081]
    hCoV-19_Sample8Throat swabs22.771,912,0141,889,14098.8099.816,607 [4,459]
    hCoV-19_Sample9Throat swabs22.171,724,7401,706,09798.9299.846,398 [3,722]
    hCoV-19_Sample10Feces36.44312,000150,86348.3596.57751 [1,435]
    hCoV-19_Sample11Feces25.951,022,9781,008,66098.6099.823,768 [2,382]
    hCoV-19_Sample12Feces26.061,771,7301,753,36898.9699.837,078 [4,750]
    hCoV-19_Sample13Environmental samples36.06268,000159,27959.4399.69874 [1,411]
    hCoV-19_Sample14Environmental samples36.54312,150150,75448.3098.99732 [1,390]
      Note. aInterquartile range.

    Table 1.  Results of amplicon scheme sequencing on fourteen SARS-CoV-2 positive clinical and environmental samples in China using the multiplex PCR sequencing method on Nanopore GridION X5

    Sequencing depth was not uniform among the amplicons along the genome; some amplicons were over-sequenced (median depth: 8,832×), while others were only sequenced a few times or not at all. Quantitative results of samples showed that all samples with relatively low Ct values (high viral load) led to a complete or nearly complete assembly. Three of the samples, hCoV-19_Sample3, hCoV-19_Sample10, and hCoV-19_Sample14, with higher Ct values (lower viral load), led to a final assembly covering only 77.15%, 96.57%, and 98.99% of the genome sequence, respectively. The significant benefit of utilizing a multiplex PCR method for virus genome sequencing over a Sanger sequencing or an unbiased metagenomic approach was the substantial increase in the number of reads specific to the viral genome[6, 9]. The number of merged reads was between 150754 and 2628756, providing sufficient sequencing data for reliable analysis of the 14 samples. We constructed a phylogenetic tree based on the full-length genome sequences of SARS-CoV-2 derived from sequencing (Supplementary Figure S1 available in www.besjournal.com).

    Figure S1.  Phylogenetic tree based on full-length genome sequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) derived by sequencing

    A limitation of this study is that our method is not suitable for identifying novel viruses as primers are SARS-CoV-2 specific. Amplicon sequencing may result in incomplete genome coverage, especially when lower abundance viral genomes are present, and the loss of both 5’ and 3’ regions. To obtain complete genomes, it may be necessary to replace the problematic primers or adjust their concentration according to other primers.

    In summary, our method showed advantageous prospects for generating new coronavirus sequences directly from clinical and environmental samples; however, further studies are required to confirm this finding. On a long-term basis, this method can potentially be used as a routine laboratory test to aid in treatment, vaccine design and deployment, infection control strategies, and surveillance.

Reference (9)
Supplements:
21084.pdf

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return