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Objective  The human socio-economic development depends on the planet’s natural capital. Humans have had a 
considerable impact on the earth, such as resources depression and environment deterioration. The objective of this study was to 
assess the impact of socio-economic development on the ecological environment of Wuhan, Hubei Province, China, during the 
general planning period 2006-2020.  Methods  Support vector machine (SVM) model was constructed to simulate the 
process of eco-economic system of Wuhan. Socio-economic factors of urban total ecological footprint (TEF) were selected by 
partial least squares (PLS) and leave-one-out cross validation (LOOCV). Historical data of socio-economic factors as inputs, 
and corresponding historical data of TEF as target outputs, were presented to identify and validate the SVM model. When 
predicted input data after 2005 were presented to trained model as generalization sets, TEFs of 2005, 2006, …, till 2020 were 
simulated as output in succession.  Results  Up to 2020, the district would have suffered an accumulative TEF of 28.374 
million gha, which was over 1.5 times that of 2004 and nearly 3 times that of 1988. The per capita EF would be up to 3.019 gha 
in 2020.  Conclusions  The simulation indicated that although the increase rate of GDP would be restricted in a lower level 
during the general planning period, urban ecological environment burden could not respond to the socio-economic 
circumstances promptly. SVM provides tools for dynamic assessment of regional eco-environment. However, there still exist 
limitations and disadvantages in the model. We believe that the next logical step in deriving better dynamic models of 
ecosystem is to integrate SVM and other algorithms or technologies. 
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