Immunological Effect of PM_{2.5} on Cytokine Production in Female Wistar Rats¹

NING-HUA HUANG^{*}, QIN WANG[‡], AND DONG-QUN XU^{‡,2}

^{*}School of Public Health, Beijing University, Beijing 100083, China; [‡]Institute for Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention, Beijing 100021, China

Objective To investigate the immunological effect of PM_{25} on cytokine production in female Wistar rats. **Methods** Female Wistar rats were given 0.3 mg, 0.75 mg, 2 mg, 5 mg of $PM_{2.5}$ per 0.5 mL saline, respectively. Saline was used as the negative control. TNF- α and IL-6 levels in the branchoalveolar lavage were measured by ELISA, and mRNA expression levels in lung tissue were detected by RT-PCR. Alveolar macrophages were collected for testing phogacytic function. **Results** Exposure to PM_{2.5} stimulated TNF- α production in a dose-dependent manner (P<0.05), However, no statistically significant difference was found. No time-dependent change in TNF- α and IL-6 production was found. TNF- α and IL-6 mRNA expressions were induced by PM_{2.5}-exposure. The phagocytic rate (PR) was significantly decreased by PM_{2.5} treatment. **Conclusion** PM_{2.5} exposure increases inflammation response of the lung in a dose-dependent manner. Moreover, tissue injury induced by PM_{2.5} may be related to altered production of cytokines. PM_{2.5} may impair the phagocytic activity of alveolar macrophages.

Key words: PM_{2.5}; Inflammation; Cytokine; Phagocytic function

REFERENCES

- Pope C A, Burnett R T, Thun M J, et al. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J Am Med Assoc 287, 1132-1141.
- 2. Schwartz J (2000). Harvesting and long term exposure effects in the relation between air pollution and mortality. *Am J Epidemiol* **151**, 440-448.
- Wall S M, John W, Ondo J L (1988). Measurement of aerosol size distributions for nitrate and major ionic species. *Atmos Environ* 22, 1649-1656.
- Driscoll K E, Howard B W, Carter J M, et al. (1996). Chemokine expression by rat lung epithelial cells: effects of *in* vitro and *in vivo* mineral dust exposure. Am J Pathol 149, 627-637.
- Becker S, Soukup J M, Gilmour M I (1996). Stimulation of human and rat alveolar macrophages by urban air particulates: effects on oxidant radical generation and cytokine production. *Toxicol Appl Pharmacol* 141, 637-648.
- Driscoll K E, Carter J M, Hassenbein D G, et al. (1997). Cytokines and particle-induced inflammatory cell recruitment. Environ Health Perspect 105(Suppl 5), 1159-1164.
- Finkelstein J N, Johnston C, Barrett T, et al. (1997). Particulate-cell interactions and pulmonary cytokine expression. Environ Health Perspect 105(Suppl 5), 1179-1182.
- Brain J D (1992). Mechanisms, measurement, and significance of lung macrophage function. *Environ Health Perspect* 97,

5-10.

- Ghio A J, Richards J H, Carter J D, et al. (2000). Accumulation of iron in the rate lung after tracheal instillation of diesel particles. *Toxicol Pathol* 28, 619-627.
- Murphy S A, BéruBé K A, Pooley F D, et al. (1998). The response of lung epithelium to well characterised fine particles. *Life Sci* 62, 1789-1799.
- Kodavanti U P, Jaskot R H, Su W Y, et al. (1997). Genetic variability in combustion particle-induced chronic lung injury. *Am J Physiol* 272, L521-L532.
- Robert V H (1999). Theory and Practice of Cytokine Assessment in Immunotoxicology. *Methods* 19, 17-27.
- Driscoll K E (1994). Macrophage inflammatory proteins: biology and role in pulmonary inflammation. *Exp Lung Res* 20, 473-489.
- 14. Driscoll K E (2000). TNF-α and MIP-2: role in particle-induced inflammation and regulation by oxidative stress. *Toxicology Letters* 112-113, 177-184.
- 15. Florence T, Beatriz G F, Lester K (2003). Reactive oxygen species in pulmonary inflammation by ambient particulates. *Free Radical Biology & Medicine* **35**, 327-340.
- 16.Shukla A, Timblin C, BeruBe K, et al. (2000). Inhaled particulate matter causes expression of nuclear factor (NF)-kappaB-related genes and oxidant-dependent NF-kappa B activation in vitro. Am J Respir Cell Mol Biol 23, 182-187.
- 17.Dong W, Lewtas J, Luster M I (1996). Role of endotoxin in tumor necrosis factor expression from alveolar macrophages treated with urban air particles. *Exp Lung Res* 22, 577-592.

0895-3988/2008 CN 11-2816/Q Copyright © 2008 by China CDC

¹This research was supported by the National Natural Science Foundation of China (No. 20077033).

²Correspondence should be addressed to Dong-Qun XU. Tel: 86-10-67791271. Fax: 86-10-67719392. E-mail: dongqunxu@yahoo.com.cn Biographical note of the first author: Ning-Hua HUANG, female, born in 1977, master degree candidate at Institute for Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention.

- 18. Becker S, Soukup J M, Gilmour M I, et al. (1996). Stimulation of human and rat alveolar macrophages by urban air particulates: effects on oxidant radical generation and cytokine production. *Toxicol Appl Pharmaco* 141, 637-648.
- 19.Lundborg M, Johard U, Stbom L L, et al. (2001). Human alveolar macrophage phagocytic function is impaired by aggregates of ultrafine carbon particles. *Environmental Research Section A* 86, 244-253.
- 20.Creutzenberg O, Bellmann B, Muhle H, et al. (1998). Lung clearance and retention of toner, TiO2, and crystalline silica, utilizing a tracer technique during chronic inhalation exposure in Syrian Golden hamsters. *Inhalation Toxicol* 10, 731-751.
- Moller W, Hofer T, Ziesenis A, et al. (2002). Ultrafine Particles Cause Cytoskeletal Dysfunctions in Macrophages. *Toxicol Appl Pharmacol* 182, 197-207.
- 22. Henderson R, Pickrell J A, Jones R K, et al. (1988). Response

of rodents to inhaled diluted diesel exhaust: biochemical and cytological changes in bronchoalveolar lavage fluid and in lung tissue. *Fundam Appl Toxicol* **11**, 546-567.

- 23. Mauderly J L, Jones R K, Griffith W C, *et al.* (1987b). Diesel exhaust is a pulmonary carcinogen in rats exposed chronically by inhalation. *Fundam Appl Toxicol* **9**, 208-221.
- 24. Wolff R K, Henderson R F, Snipes M B, et al. (1987). Alterations in particle accumulation and clearance in lungs of rats chronically exposed to diesel exhaust. Fundam Appl Toxicol 9, 154-166.
- 25.Driscoll K E, Carter, J M, Howard, B W, *et al.* (1994). Mutagenesis in rats lung epithelial cells *in vivo* silica exposure of *ex vivo* exposure to inflammatory cells. *Am J Respir Crit Care Med* **149**, A553.

(Received July 10, 2007 Accepted October 12, 2007)