Antagonistic Potential against Pathogenic Microorganisms and Hydrogen Peroxide Production of Indigenous Lactobacilli Isolated from Vagina of Chinese Pregnant Women¹

 $\begin{array}{l} \text{Heng-Yi} \ XU^{\text{+},\text{!},\text{#}}, \text{Wan-Hong} \ TIAN^{\text{+},\text{#}}, \text{Cui-Xiang} \ WAN^{\text{+}}, \text{Li-Jun} \ JIA^{\text{+}}, \text{Lan-Yin} \ WANG^{\text{-}}, \\ \text{Jing} \ YUAN^{\text{+}}, \text{Chun-Mei} \ LIU^{\text{+}}, \text{Ming} \ ZENG^{\text{+},\text{*}}, \text{and} \ \text{Hua} \ WEI^{\text{+},\text{*}} \end{array}$

State Key Laboratory of Food Science and Technology, Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China; [†]National Institute for the Control of Pharmaceutical and Biological Products, Beijing 100050, China; [△]Beijing Tiantan Hospital, Beijing 100050, China; [★]Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China

Objective To investigate the indigenous lactobacilli from the vagina of pregnant women and to screen the isolates with antagonistic potential against pathogenic microorganisms. **Methods** The strains were isolated from pregnant women's vagina and identified using the API50CH system. The ability of the isolates to produce hydrogen peroxide was analyzed semi-quantitatively using the TMB-HRP-MRS agar. The antagonistic effects of the isolates on pathogenic microorganisms were determined with a double layer agar plate. **Results** One hundred and three lactobacilli strains were isolated from 60 samples of vaginal secretion from healthy pregnant women. Among them, 78 strains could produce hydrogen peroxide, in which 68%, 80%, 80%, and 88% had antagonistic effects against *Candida albicans* CMCC98001, *Staphylococcus aureus* CMCC26003, *Escherichia coli* CMCC44113, and *Pseudomonas aeruginosa* CMCC10110, respectively. **Conclusion** The recovery of hydrogen peroxide-producing lactobacilli decreases with the increasing pregnant age and time. The most commonly isolated species from vagina of Chinese pregnant women ar *Lactobacillus acidophilus* and *Lactobacillus crispatus*. Most of *L. acidophilus* and *L. crispatus* produce a high H₂O₂ level.

Key words: Lactobacilli; H₂O₂; Pregnant women; Antagonistic; Pathogen

REFERENCES

- Yu C M, Zhu F X (2006). Analyzing of the general health investigation for the working woman from 2001 to 2005. *Maternal Child Health Care of China* 21, 683-684. (In Chinese)
- Massi M, Vitali B, Federici F (2004). Identification method based on PCR combined with automated ribotyping for tracking probiotic *Lactobacillus* strains colonizing the human gut and vagina. *J Appl Microbiol* **97**, 777-786.
- Wilks M, Thin R N, Tabaqchali S (1982). Quantitative methods for studies on vaginal flora. J Med Microbiol 15, 141-147.
- Wilks M, Wiggins R, Whiley A (2004). Identification and H₂O₂ production of vaginal lactobacilli from pregnant women at high risk of preterm birth and relation. *J Clin Microbiol* 42, 713-717.
- Brurberg M B, Nes I F, Eiksink V G (1997). Pheromone-induced production of antimicrobial peptides in *Lactobacillus*. *Mol Microbiol* 26, 347-360.
- 6. Reid G, Cook R L, Bruce A W (1987). Examination of strains of lactobacilli for properties which may influence bacterial

interference in the urinary tract. J Urol 138, 330-335.

- 7. Reid G, Heinemann C, Velraeds M (1999). Biosurfactants produced by *Lactobacillus*. *Meth Enzymol* **310**, 426-432.
- Reid G (2000). In vitro analysis of a dairy strain of Lactobacillus acidophilus NCFMTM as a possible probiotic for the urogenital tract. Int Dairy J 10, 415-419.
- Rabe L K, Hillier S L (2003). Optimization of media for detection of hydrogen peroxide production by *Lactobacillus* species. *J Clin Microbiol* 41, 3260-3264.
- Parks T P, Xu Q, Lagenaur L A (2005). Bacterial therapeutics for the treatment and prevention of urogenital infections. In G. W. Tannock, eds. *Probiotics and prebiotics-scientific aspects*. The United Kingdom: Caister Academic Press, pp. 171-194.
- 11. Eschenbach D A (1993). History and review of bacterial vaginosis. *Am J Obstet Gynecol* **169**, 441-445.
- Hill G B (1993). The microbiology of bacterial vaginosis. Am J Obstet Gynecol 169, 450-454.
- 13. Pybus V, Onderdonk A B (1999). Microbial interactions in the vaginal ecosystem, with emphasis on the pathogenesis of bacterial vagtinosis. *Microb Infect* 1, 285-292.
- 14. Chang Q, Xie F, Jiang L (2003). Significance of the changes of vaginal lactobacilli in bacterial vaginosis in pregnant women.

0895-3988/2008 CN 11-2816/Q Copyright © 2008 by China CDC

¹This work was partially supported by China Scholarship Council (2003836007), 863 Program of China (2008AA10Z337), and 973 Program of China (2005DKA21202-1).

^{*}Correspondence should be addressed to Dr. Hua WEI, E-mail: weihua114@hotmail.com; Dr. Ming ZENG, E-mail: zengming@263.net ^{*}These authors contributed equally to this work.

Acta Aca Med Mil Tert 25, 918-920. (In Chinese)

- 15. Antonio M A, Hawes S E, Hillier S L (1999). The identification of vaginal *Lactobacillus* species and the demographic and microbiological characteristics of women colonized by these species. *J Infect Dis* 180, 1950-1956.
- 16. Devillard E, Burton J P, Hammond J A (2004). Novel insight into the vaginal microflora in postmenopausal women under hormone replacement therapy as analyzed by PCR-denaturing gradient gel electrophoresis. *Eur J Obstet Gynecol Reprod Biol* 117, 76-81.
- 17.Giorgi A, Torriani S, Dellaglio F (1987). Identification of vaginal lactobacilli from asymptomatic women. *Microbiologica* 10, 377-384.
- Pavlova S I, Kilic A O, Kilic S S (2002). Genetic diversity of vaginal lactobacilli from women in different countries based on 16S rRNA gene sequences. J Appl Microbiol 92, 451-459.
- 19.Song Y L, Kato N, Matsumiya Y (1999). Identification of and hydrogen peroxide production by fecal and vaginal lactobacilli isolated from Japanese women and newborn infants. J Clin Microbiol 37, 3062-3064.
- 20. Vasquez A, Jakobsson T, Ahrne S Molin (2002). Lactobacillus flora of healthy Swedish women. J Clin Microbiol 40,

2746-2749.

- 21. Verhelst R, Verstraelen H, Claeys G (2005). Comparison between Gram stain and culture for the characterization of vaginal microflora: definition of a distinct grade that resembles grade I microflora and revised categorization of grade I microflora. *BMC Microbiol* 5, 61.
- 22.Shopova E (2003). Hydrogen peroxide-producing *Lactobacillus* species in healthy women and in women with bacterial vaginosis. *Akush Ginekol (Sofiia)* **42**, 12-15.
- 23.McLean N W, Rosenstein I J (2000). Characterisation and selection of a *Lactobacillus* species to re-colonise the vagina of women with recurrent bacterial vaginosis. *J Med Microbiol* 49, 543-552.
- 24. Rousseau V, Lepargneur J P, Roques C (2005). Prebiotic effects of oligosaccharides on selected vaginal lactobacilli and pathogenic microorganisms. *Anaerobe* 11, 145-153.
- 25. Mastromarino P, Brigidi P, Macchia S (2002). Characterization and selection of vaginal *Lactobacillus* strains for the preparation of vaginal tables. *J Appl Microbiol* **93**, 884-893.

(Received October 21, 2007 Accepted March 9, 2008)