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How does Cellular Heparan Sulfate Function in Viral Pathogenicity?*
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Abstract

Heparan sulfate (HS) is ubiquitously expressed on the surfaces and in the extracellular matrix of
virtually all cell types, making it an ideal receptor for viral infection. Compared with wild-type viruses,
cell culture-adapted laboratory strains exhibit more efficient binding to cellular HS receptors. HS-binding
viruses are typically cleared faster from the circulation and cause lower viremia than their
non-HS-binding counterparts, suggesting that the HS-binding phenotype is a tissue culture adaptation
that lowers virus fitness /n vivo. However, when inoculated intracranially, efficient cell attachment
through HS binding can contribute to viral neurovirulence. The primary aim of this review is to discuss
the roles of HS binding in viral pathogenicity, including peripheral virulence and neurovirulence.
Understanding how heparan sulfate functions during virus infection /n vivo may prove critical for
elucidating the molecular mechanism of viral pathogenesis, and may contribute to the development of

therapeutics targeting HS.
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INTRODUCTION

eparan sulfate (HS) is a negatively

H charged linear carbohydrate polymer
composed of repeating disaccharides of
glucosamine and hexuronic acids that are sulfated at
various positionsm. Apart from the essential
functions in animal development and homeostasis,
demonstrated by targeted disruption of the enzymes
involved in the biosynthesis of HS[H], HS is drawing
attention as a potential target for the prevention of
viral infection and pathogenicity. As shown in Table
1[4'28], cell surface HS, found in both vertebrate and
invertebrate species, has been shown to serve as a
receptor for a growing number of viruses from many
different families, including some important
pathogens causing infectious epidemics, such as
herpes simplex virus (HSV)[4], human papillomavirus
(HPV)“O], hepatitis B virus (HBV)“”, respiratory

syncytial virus (RSV)™ foot-and-mouth disease virus
(FMDV)[IG] and human immunodeficiency virus type
1 (HIV-1)[26]. In addition, several alphaviruses were
also found to use cellular HS as a receptor, such as
Sindbis virus (SINV)m], Ross River virus (RRV)[23],
Venezuelan equine encephalitis virus (VEEV)[24] and
Semliki Forest virus (SFV)[25].

It is well established that HS is also involved in
pathological processes by mediating infection of
diverse microbial entities including viruses. The most
direct evidence for this was obtained through
studies of infection by HSV that required a specific
fine structure of HS to interact™. Generally, a viral
HS-binding phenotype was obtained by multiple
passages in tissue culture, or by constructing mutant
viruses harboring a mutation conferring a positive
charge. HS-binding viruses are typically cleared
faster from the circulation and cause lower viremia
than their non-HS-binding counterparts, suggesting
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that HS-binding is a tissue culture adaptation that
lowers virus fitness /n vivo. However, when viruses
are inoculated intracranially, efficient HS-binding can
contribute to viral neurovirulence in an animal
model®. The effect of HS affinity on viral peripheral
virulence and viral neurovirulence indicates that viral
pathogenicity may be correlated to the manner of
inoculation, and that HS binding may attenuate viral
infection that is dependent on high-titer viremia.
However, efficient interaction with HS can increase
virulence, possibly through enhancing viral
replication within specific host tissues such as the
brain. Elucidation of the relevance of HS binding on
viral pathogenicity may therefore lead to insights
into the molecular mechanisms of HS-related
infectious diseases.

The Structural Characteristics of HS that Confer its
Role as a Receptor

Proteoglycans carrying HS chains are
ubiquitously expressed at cell surfaces and in
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extracellular matrices, and HS chains interact with
numerous proteins, including growth factors,
morphogens, extracellular matrix proteins and many
pathogens, such as bacteria, protozoa, and viruses.
Although the virus—receptor interaction is needed to
initiate infection, pathogenesis is a multi-step
process involving cellular functions, such as the
capacity of the host to develop a proper immune
response, the velocity of virus replication,
cytopathogenicity and the spread of infection within
and between organs, which again may or may not
depend on the presence of specific cellular receptors.
These interactions form the basis of HS-related
biological phenomena, which regulate key events in
embryonic development and homeostasis, and the
ability of viruses to bind HS could affect viral
pathogenicity, thus mediating disease progression.

It has recently been shown that cell surface HS is
involved in viral infection and pathogenesis through
being used as a receptor by a number of viruses
(Table 1). Three major characteristics confer cellular

Table 1. Viruses Using HS as Receptor

Virus Genome Virus Family Virus Genus Virus Specie Receptor Type
Herpesviridae Simpexvirus Herpes simplex virus® Specific receptor
Varicellovirus Varicella-zoster virus® Unknown
Cytomegalovirus Human herpesvirus 5! Unknown
Pseudorabies virus”’ Unknown
DNA Bovine herpesvirus 1® Unknown
Poxviridae Orthopoxvirinae Vaccinia virus® Unknown
Papovaviridae Papillomavirus Human papillomavirusllo] Initial receptor
Hepadnaviridae Orthohepadnavirus Hepatitis B virus™ Unknown
Parvoviridae Dependovirus Adeno-associated virus type 2t Initial receptor
Paramyxoviridae Paramyxovirus Human parainfluenza virus type 3t Unknown
Pneumovirus Human respiratory syncytial virus™ Initial receptor
Picornaviridae Cardiovirus Theiler’s virus™ Unknown
Aphthovirus Foot-and-mouth disease virus™® Initial receptor
Enterovirus Swine vesicular disease virus'” Initial receptor
Flaviviridae Flavivirirus Dengue virus™® Initial receptor
Tick borne encephalitis virus™ Initial receptor
Hepatitis C virus Hepatitis C virus® Unknown
RNA Pestivirus Swine fever virus?" Unknown
Togoviridae Alphavirus Sindbis virus®?? Initial receptor
Ross River virus™ Unknown
Venezuelan equine encephalitis virus®” Unknown
Semiliki forest virus™! Unknown
Retroviridae Lentivirus Human immunodeficiency virus type 119 Initial receptor
BLV-HTLV retroviruses Human T-cell leukemia virus®” Unknown
Coronaviridae Coronavirus A vian coronavirus infectious bronchitis virus® Unknown
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HS selectivity for protein binding. First, HS is a linear
carbohydrate polymer with a negative charge, which
is composed of repeating disaccharides of
glucosamine and hexuronic acid®. Most protein—HS
interactions are mediated by the electrostatic
interaction between clusters of basic amino acids
arranged in a three-dimensional array on the ligand
and a concentrated negative charge on the sulfated
polysaccharide chain. Thus, the phenotype of
HS-dependent infection through tissue culture was
sometimes conferred by the selective advantage of
an adaptive mutation for positively charged amino
acids (aa), such as Arg, Lys, and His. Second,
clustering of these modifications along the HS chain
yielded highly N-sulfated domains (NS domains) of
approximately 12-20 residues that alternate with
typically larger sized, relatively unmodified,
N-acetyl-rich domains (NA domains). The NS
domains can assume several different conformations,
and thus influence the orientation of the sulfate
residues in space. This domain organization places
relatively flexible NA domains adjacent to relatively
rigid NS domains, thus facilitating protein
interactions with the sulfate residues. Finally, this
micro-sequence diversity and macro-organization
are cell type specific, and do not appear to be core
protein specific, presumably the result of the cell
type-specific repertoires of HS chain-modifying
enzymes.

HS as a Viral Receptor

HS on the cell surface and in the extracellular
matrix normally binds to a wide variety of growth
factors, chemokines, enzymes and matrix
componentsBO's”, but is also important in the
attachment of a number of bacteria, protozoa and
viruses®?. Recently, much attention has been
focused on the interaction of viral surface proteins
with HS, which are present almost ubiquitously on
cell surfaces. The first viral strain reported to use HS
as a receptor was HSV type 1, for which the
interaction with HS carrying a specific sulfation
pattern can functionally substitute for a protein
receptor[4]. Although the overall picture is still far
from complete, it has become clear during the past
few years that cellular HS is used as a receptor by a
growing number of viruses, including five DNA virus
families and six RNA virus families (Table 1), some
of which can cause severe disease epidemics in
humans, such as HIV, HBV and HPV. Thus it has
been proposed that the binding of the viral surface
to HS may play an important role in viral
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pathogenicity[23‘33'38].

Proteins typically bind electrostatically to HS via
stretches of positively charged aa, such as Lys and
Arg, and attachment of viruses to HS is presumably
mediated in the same fashion. During the past few
years research into a number of viruses, including
alphaviruses[39'4°], pestiviruseslzo], picornaviruses[‘u’“]
and retroviruses[43'44], has demonstrated that
adaptation to certain cell lines results in the
selection of mutants that bind HS with high affinity.
This suggested that the ability of a virus to bind HS
could be an adaptation that arose in laboratory
strains during repeated passaging in tissue culture,
and that non-tissue culture-adapted strains infect
host cells by a HS-independent mechanism. Thus,
the HS-dependent phenotype has a selective
advantage through the adaptive mutations for
positively charged aa acquired during tissue culture,
and these adaptive mutations have been found to
increase viral infectivity by enhancing the binding or
attachment to HS on the cell surface.

It should be noted that HS is commonly
exploited by multiple viruses for the initial
attachment to host cells. In most cases, the binding
of the virus to HS seems to be relatively low-affinity,
and may serve the purpose of concentrating the
virus on the cell surface to facilitate subsequent
binding to one or more high-affinity receptors[4s’49].
This model is supported by results obtained using
the flaviviruses, such as dengue virus and tick-borne
encephalitis virus. Dengue virus binds first to HS and then
to a high-affinity receptor, which induces endocytosis and
subsequent cell membrane fusion™*7, Thus, HS
proteoglycans on the cell surface can be used as
initial attachment receptors by several viruses. In
contrast, HSV-1 is unique because it can use HS for
both attachment and penetration, provided specific
binding sites for the HSV-1 envelope glycoprotein,
gD, are present[SI]. Therefore, future studies to
investigate the interaction between cellular HS and
other co-receptors will be important in elucidating
the additional roles of HS in viral pathogenicity.

HS Binding and Peripheral Virulence

It is easy to demonstrate that a viral
HS-dependent phenotype, either in cell-tissue
cultured strains or in recombinant viruses carrying
mutations conferring a positive charge, can increase
viral infectivity via efficient attachment to cultured
cells. However, investigations into how HS binding
influences viral infection /n vivo remain more
difficult. However, how HS-binding proteins behave
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in vivo is well characterized and pharmacokinetic
studies on HS-binding proteins, such as bactericidal/
permeability-increasing  protein, extrace llular
superoxide dismutase and hepatocyte growth
factor/scatter factor, have demonstrated rapid
biphasic clearance from the circulation after
intravenous injection[52_54]. This biphasic decay can
be modeled as the sum of two exponential
equations[ss]. The early, rapid phase of clearance is
strongly influenced by binding to HS and clearance
during this phase can be decreased by co-injecting
heparin[56'57], digesting tissue HS with intravenous
heparinaselssl, or mutating basic residues so that the
protein losses its capacity to bind HS®**9. Because
the liver contains large amounts of highly sulfated HS
0 3 large percentage of the protein removed from
the circulation can be found in this organ[56'58’61'63],
and it is thought that viruses able to bind HS are
mediated in the same fashion.

Previous investigations on the clearance of
alphaviruses from the circulation showed that
HS-binding variants were typically cleared faster
after intravenous injection than non-HS-binding
variants>>386468], One of these studies
demonstrated the accumulation of VEEV in the liver,
with virions deposited in the sinusoids and the
spaces of Disse, as well as within vacuoles of Kupffer
cells®. In contrast, recombinant SINVs with lower
binding to heparin or cellular HS were cleared more
slowly from the circulation and caused higher
viremia than the parental virus®?. In addition,
several studies have demonstrated that non-HS-
binding strains of SINV?**? vEEVZ FMDVE®
tick-borne encephalitis virus™ and classical swine
fever virus® are more virulent in animal models
than their HS-binding counterparts, suggesting that
for these viruses, the HS-binding phenotype is a
tissue culture adaptation that lowers virus fitness /n
vivo. The selective adaptation of HS-binding has also
been shown to be a common and frequent
phenomenon during the propagation of flaviviruses,
which attenuated HS-binding variants, suggesting
the major role of HS dependence in flavivirus
attenuation. Given what is now known about the
clearance of HS-binding proteins from the
circulation, it seems likely that the differences in
clearance rates in these studies were due to
differences in viral binding to HS. These findings,
together with what is known about the behavior of
HS-binding proteins /in vivo, provide strong evidence
that the ability to bind HS has a negative impact on
virus production /n vivo.
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The general conclusion that strong binding to a
ubiquitous carbohydrate such as HS causes
attenuation /n vivo may apply only to viruses that
cause plasma viremia, and to instances in which viral
spread through the circulation contributes to
dissemination within the infected host. High viremia
is also an important factor in the transmission from
host to host for insect-borne arboviruses, such as
SINV and dengue virus. In contrast, for viruses such
as HSV type 1, infection is spread primarily from cell
to cell and strong binding to HS is not necessarily
deleterious. Besides accelerated clearance, another
mechanism that might prevent HS-binding viruses
from achieving high viremia is interaction with HS in
the extracellular matrix near the site of viral
production. The amount of virus in the blood
required for equilibrium is a function of both the
rate of release of new virus into the circulation and
the rate of clearance, both of which may be
decreased if the virus can bind HS. Sa-Carvalho et al.
have shown that variants of FMDV that bind well to
HS are attenuated in cattle, showing a decreased
ability to spread from the site of inoculation™?.
HS-binding variants attach better to cultured cells,
but are attenuated in mice and cattle, apparently
because of a reduced ability to spread from the site
of inoculation. After injection of cattle with high
doses of an attenuated HS-binding variant, disease
and systemic dissemination of the virus were
observed, but were due to the development of
non-HS-binding revertants?. It is proposed that
binding to HS controls both the plaque size and the
circulating half-life of the virus and that variants are
cleared more quickly from the circulation, because
they bind more effectively to HS. Therefore, the viral
HS-dependent phenotype, resulting from either cell
tissue culture or from recombinant viruses carrying
mutations conferring a positive charge, generally
result in increased specific infectivity, small plaque
formation and significant attenuation of peripheral
virulence.

HS Binding and Viral Neurovirulence

The mechanism behind the effect of HS binding
on viral neurovirulence involves the entry of viruses
into the central nervous systems (CNS) in the case of
viruses that bind to cellular HS after peripheral
inoculation, and involves the replication capacity of
viruses after intracranial inoculation. In the case of
HIV, there is /in vitro evidence that HS improves the
efficiency of binding to brain microvascular
endothelial cells, and this is postulated to facilitate
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the entry of this virus into the CNS®"®® However,

higher levels of virus in the blood were not sufficient
to confer increased virulence, and the differences
observed in viral replication in the CNS were not
predicted by binding to HS. Entry of alphaviruses into
the CNS has been assumed to occur via the infection
of endothelial ceIIs[GQ'm, but there is also evidence
for viral entry through axonal transport by nerves
innervating either a peripheral site of replication or
the olfactory mucosa’?. Both the endothelial cell
and olfactory routes of entry require spread to those
sites through the blood, and it is reasonable to
assume that the amount of virus in the blood and
the length of time it circulates will influence the
likelihood of infecting these sites and gaining entry
into the CNS. Thus, viral replication and clearance in
the periphery is correlated with the HS-binding
phenotype, but does not totally account for
differences in viral neurovirulence and other
properties of the virus involved with neurovirulence;
for example, the genetic background of the host
could affect the outcome of viral infection.

Several descendant viruses from prototype SINV
AR339 with HS-binding mutations showed low
virulence after subcutaneous inoculation, but high
virulence when inoculated directly into the brains of
mice#* % |n contrast, the highly neurovirulent
Theiler's murine encephalomyelitis virus (TMEV)
strain GDVII uses HS as a co-receptor to enter target
cells. GDVII virus with a non-HS-binding phenotype
was obtained by adaptive growth in HS-deficient
cells, which exhibited two aa substitutions (R3126L
and N1051S) in the capsid[73]. When intracerebrally
inoculated, the neurovirulence of the adapted virus
in mice was substantially attenuated. Moreover,
severe poliomyelitis, but not acute encephalitis, was
observed in infected mice. The reason for this was
that the adapted virus showed altered cell tropism in
the CNS of mice, shifting from cerebral and
brainstem neurons to spinal cord anterior horn cells,
suggesting that the use of HS as a receptor by GDVII
virus facilitates cell entry and plays an important role
in cell tropism and neurovirulence /in vivd”™. These
results indicated that viral variants with efficient cell
attachment through HS binding exhibited increased
viral neurovirulence, presumably through altered cell
tropism or enhanced replication within specific host
tissues, such as the brain.

PERSPECTIVE

Most protein-HS binding is mediated by
electrostatic interactions between clusters of basic
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aa arranged in a three-dimensional array on the
ligand, and a concentrated negative charge on the
sulfated polysaccharide chain. Attachment of virus to
cellular HS is presumably mediated via stretches of
positively charged aa, such as Lys and Arg. Some viral
envelope glycoproteins have been postulated to
constitute heparin-binding domains, rich in positively
charged aa. For example, E, glycoprotein from
mature SINV particles have two heparin-binding
domains located at aa 127-132 and 145-150,
conforming to the XBBXBX and XBBBXXBBX (B, basic;
X, any aa) heparin-interaction consensus motifs
identified by Cardin and Weintraub”. In addition,
adaptive mutations to positive charges scattered
throughout the envelope glycoprotein sequence may
play a role in the binding of virus to cell surface HS.
Therefore, we speculate that the binding sites of
virus to HS are composed of two parts: linear
HS-binding domains similar to the XBBXBX or
XBBBXXBBX consensus motifs and the scattered
positively charged aa located in the envelope
glycoproteinm].

Taken together, viruses displaying a HS-binding
phenotype, resulting from either tissue culture or
recombination, exhibit attenuated peripheral
virulence, but increased viral neurovirulence. Thus,
HS binding may attenuate viral disease that is
dependent on high-titer viremia, but efficient cell
attachment through HS-binding can increase
virulence, presumably through altering cell tropism
or enhancing viral replication within specific host
tissues, such as the brain. Understanding the roles of
HS binding in viral pathogenicity may help us to
obtain insight into the dynamics of viral behavior,
and may also be important in the development of
therapeutics targeting HS.
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