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Abstract

Objective     Exposure  to  microgravity  results  in  postflight  cardiovascular  deconditioning  in  astronauts.
Vascular oxidative stress injury and mitochondrial dysfunction have been reported during this process.
To elucidate the mechanism for this condition, we investigated whether mitochondrial oxidative stress
regulates calcium homeostasis and vasoconstriction in hindlimb unweighted (HU) rat cerebral arteries.

Methods     Three-week  HU  was  used  to  simulate  microgravity  in  rats.  The  contractile  responses  to
vasoconstrictors,  mitochondrial  fission/fusion,  Ca2+ distribution,  inositol  1,4,5-trisphosphate  receptor
(IP3R)  abundance,  and  the  activities  of  voltage-gated  K+ channels  (KV)  and  Ca2+-activated  K+ channels
(BKCa) were examined in rat cerebral vascular smooth muscle cells (VSMCs).

Results    An increase of cytoplasmic Ca2+ and a decrease of mitochondrial/sarcoplasmic reticulum (SR)
Ca2+ were  observed  in  HU  rat  cerebral  VSMCs.  The  abundance  of  fusion  proteins  (mitofusin  1/2
[MFN1/2])  and  fission  proteins  (dynamin-related  protein  1  [DRP1]  and  fission-mitochondrial  1  [FIS1])
was  significantly  downregulated  and  upregulated,  respectively  in  HU  rat  cerebral  VSMCs.  The
cerebrovascular  contractile  responses  to  vasoconstrictors  were  enhanced  in  HU  rats  compared  to
control  rats,  and  IP3R  protein/mRNA  levels  were  significantly  upregulated.  The  current  densities  and
open  probabilities  of  KV and  BKCa decreased  and  increased,  respectively.  Treatment  with  the
mitochondrial-targeted  antioxidant  mitoTEMPO  attenuated  mitochondrial  fission  by  upregulating
MFN1/2  and  downregulating  DRP1/FIS1.  It  also  decreased  IP3R  expression  levels  and  restored  the
activities  of  the  KV and  BKCa channels.  MitoTEMPO  restored  the  Ca2+ distribution  in  VSMCs  and
attenuated the enhanced vasoconstriction in HU rat cerebral arteries.

Conclusion     The  present  results  suggest  that  mitochondrial  oxidative  stress  enhances  cerebral
vasoconstriction by regulating calcium homeostasis during simulated microgravity.
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INTRODUCTION

E xposure  to  microgravity  results  in
postflight  cardiovascular  dysfunction  and
orthostatic  intolerance  in  astronauts,

which poses a threat to the health of the astronauts
and  safety  during  spaceflight.  Although  much
progress has been made in this field, the underlying
mechanism remains to be established.

Studies  on  ground-based  rodent  animals  have
reported  region-specific  vascular  structural  and
functional  remodeling in  hindlimb unweighting (HU)
rat  arteries[1-4].  Both  nitric  oxide  (NO)  and
endothelin-1  in  endothelial  cells  are  modified  in  a
simulated  microgravity  setting[5].  The  levels  of
endothelial  nitric  oxide  synthase  and  nitrate/nitrite
content  in  cerebral  arteries  increase[6,7],  which  was
also  confirmed  in  human  umbilical  vein  endothelial
cells  and  human  microvessel  endothelial  cells
exposed  to  microgravity  simulated  by  a  random
positioning  machine  and  rotating  wall  vessel[8,9].
Calcium  influx  and  efflux  are  modulated  by  large-
conductance  calcium-activated  K+ channels  (BKCa)
and L-type Ca2+ channels in HU rat cerebral vascular
smooth  muscle  cells  (VSMCs),  which  regulate
vascular  tension[10,11].  Plasma  membrane  calcium-
regulating  channels,  sarco/endoplasmic  reticulum
Ca2+ ATPase,  ryanodine  receptors,  and  the  inositol
1,4,5-trisphosphate  receptor  (IP3R)  regulate
intracellular Ca2+ homeostasis in VSMCs[12]. The influx
of  extracellular  Ca2+ and  the  release  of  Ca2+ from
intracellular calcium stores, such as the sarcoplasmic
reticulum  (SR)  and  mitochondria  regulate  cellular
Ca2+ homeostasis[13].  However,  the  mechanism  of
regulating  Ca2+ homeostasis  in  VSMCs  exposed  to
microgravity  or  simulated  microgravity  remains
unclear.

Reactive  oxygen  species  (ROS)  increase
cytoplasmic Ca2+ concentration ([Ca2+]) by facilitating
Ca2+ release from the endoplasmic reticulum (ER)/SR
through  the  IP3R[14,15].  Mitochondrial-derived  ROS
enhance  angiotensin  II-triggered  vascular
contraction  by  elevating  Ca2+ and  IP3 levels[16].
Mitochondria  regulate  Ca2+ through  fission  and
fusion  mediated  by  mitofusion  1/2  (MFN1/2),
dynamin-related  protein  1  (DRP1),  and  fission
protein  1  (FIS1)[17-20].  Our  previous  studies  have
detected  cellular  oxidative  stress  and  mitochondrial
oxidative  injury  in  HU  rat  cerebral  VSMCs[21-23] and
inhibiting  NADPH  oxidase  improves  cerebrovascular
reactivity  in  HU  rats[7];  however,  whether  these
factors  are  associated  with  the  regulation  of  Ca2+

homeostasis  and  vascular  remodeling  is  unclear.  To

better  understand  the  molecular  mechanisms  of
vascular remodeling during microgravity, the present
study  was  designed  to  investigate  the  roles  and
mechanism  of  mitochondrial  oxidative  stress  during
Ca2+ homeostasis  and  the  regulation  of
cerebrovascular  contraction  in  HU  rat  cerebral
arteries. 

MATERIALS AND METHODS

The  handling  and  treatment  of  animals  were
according to the Guiding Principles for the Care and
Use  of  Animals  in  the  Physiological  Sciences  and
were  approved  by  the  Chinese  guidelines  for
experimental  animals.  The  care  and  use  of
experimental rats were supervised and approved by
the  Animal  Ethical  Committee  of  Chinese  PLA
General Hospital. 

Ground-based  Simulation  of  Microgravity  and
VSMCs Preparation

HU was  used  to  simulate  microgravity  in  rats  as
described  in  our  previous  studies[6,24].  Briefly,  male
Sprague-Dawley rats were randomly assigned to four
groups:  control  (CON),  HU,  mitoTEMPO-treated  HU
(HU +  MT),  and  mitoTEMPO-treated  control  (CON +
MT).  To  simulate  the  cardiovascular  effect  of
microgravity,  the HU rats  were maintained in  about
a  −30°  head-down  tilt  position  and  housed
individually  with  their  hindlimbs  unloaded  under  a
12:12-h  light-dark  cycle  at  23  ±  1  °C  with  food  and
water  available ad  libitum.  The  control  rats  were
housed  in  identical  Plexiglas  cages,  except  that  the
tail  suspension  device  was  removed.  HU  +  MT  and
CON  +  MT  rats  received  distilled  water  containing
mitoTEMPO  (Alexis  Biochemicals,  San  Diego,  CA,
USA)  provided  at  a  rate  of  0.7  mg/(kg·day)  by
gavage.  The  rats  in  the  other  groups  received  an
equal  volume  of  vehicle  (distilled  water).  The  rats
were  killed  by  exsanguination  via  the  abdominal
aorta  3  weeks  later.  The  cerebral  arteries  were
rapidly  removed  and  placed  in  cold  Krebs  buffer
solution containing 118.3 mmol/L NaCl, 14.7 mmol/L
KCl,  1.2  mmol/L  KH2PO4,  1.2  mmol/L  MgSO4·7H2O,
2.5  mmol/L  CaCl2·2H2O,  25  mmol/L  NaHCO3,
11.1  mmol/L  dextrose,  and 0.026 mmol/L  EDTA (pH
7.4).  VSMCs were dissociated from cerebral  arteries
as described previously[11]. 

Western Blot

The  samples  were  homogenized  in  10  mmol/L
HEPES  lysis  buffer  (320  mmol/L  sucrose,  1  mmol/L
EDTA,  1  mmol/L  DTT,  10  μg/mL  leupeptin,  and
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2  μg/mL  aprotinin,  pH  7.40)  at  0–4  °C.  The
homogenate  was  centrifuged  at  12,000 ×g for
10  min  at  4  °C.  Protein  concentrations  were
determined  with  a  bicinchoninic  acid  assay  kit
(Pierce,  Rockford,  IL,  USA).  The  extracts  were
fractionated  by  sodium  dodecyl  sulfate-
polyacrylamide  gel  electrophoresis  and  transferred
to  a  polyvinylidene  difluoride  membrane.  The
membranes  were  incubated with  antibodies  against
IP3R,  MFN1,  MFN2,  DRP1,  FIS1,  or  GADPH  at  4  °C
overnight  (Abcam,  Cambridge,  UK).  Then,  the
membranes  were  incubated  with  horseradish
peroxidase-conjugated  anti-mouse  or  anti-rabbit
antibodies  for  2  h.  The  blots  were  washed  and
developed  with  an  enhanced  chemiluminescent
system  (Amersham  Biosciences,  Uppsala,  Sweden)
according to the manufacturer’s protocol. 

Transmission Electron Microscopy (TEM) Analysis

Cerebral  VSMCs  were  washed  three  times  in
0.1  mmol/L  phosphate  buffered  solution  (PBS),
followed by fixation in 1% osmium tetroxide at  4 °C
for  3  h.  The  samples  were  washed  three  times  in
0.1  mmol/L  PBS  again  and  gradually  dehydrated  in
alcohol  at  different  concentrations  at  4  °C.  After
replacing  the  solution  with  propylene  oxide  and
embedding  using  the  SPI-Chem  Embedding  Kit  (SPI,
Chicago, IL, USA), the samples were fixed at 70 °C for
8 h. The sections (70 nm) were prepared with a Leica
EM  UC6  ultramicrotome  (Leica  Microsystems,
Wetzlar, Germany), placed on EM grids, and stained
with  3% uranyl  acetate-lead  citrate  solution  (SPI),
followed  by  washing,  drying,  and  imaging  using  a
JEM1230 TEM (JEOL, Tokyo, Japan). 

Immunohistochemistry

Paraffin-embedded sections (3 μm) of the basilar
arteries  were  mounted  on  Thermo  Scientific
SuperFrost™ plus slides and dried overnight.  Briefly,
the  arterial  sections  were  incubated  with  primary
IP3R antibody  (Abcam).  After  washing  with  PBS,  the
horseradish  peroxidase  was  developed  with  3,3-
diaminobenzadine  (Roche  Diagnostics,  Mannheim,
Germany) as the chromogen substrate. The sections
were  rinsed,  dehydrated  in  ethanol,  cleared  in
xylene,  and  mounted.  IP3R  staining  in  the
cerebrovascular  sections  was  observed  under  a
microscope. 

Cytoplasmic, Mitochondrial, and SR Ca2+ Assay

Cytoplasmic,  mitochondrial,  and  SR  Ca2+

concentrations  were  determined  using  a  flow
cytometry  system  with  the  Ca2+ indicators  Fluo-4

AM,  X-Rhod-1  AM,  and  Fluo-5N,  respectively.
Isolated  cerebral  VSMCs  were  placed  in  Hank’s
balanced salt  solution (Sigma-Aldrich,  St.  Louis,  MO,
USA) and incubated with Fluo-4 AM (5 μmmol/L), X-
Rhod-1 AM (5 μmmol/L), and Fluo-5N (10 μmmol/L)
for  60  min  at  37  °C.  The  Ca2+ content  in  individual
groups  of  VSMCs  was  analyzed  with  the  BD
LSRFortessaTM flow  cytometer  (BD  Biosciences,
Franklin Lakes, NJ, USA). 

Measurement of KV and BKCa Currents

The patch-clamp technique and whole-cell patch-
clamp  recordings  were  used  to  analyze  the  KV and
BKCa currents. Extracellular fluid (150 mmol/L choline
chloride,  5  mmol/L  KCl,  2  mmol/L  CaCl2,  1  mmol/L
MgCl2,  10  mmol/L  HEPES,  1  mmol/L  CdCl2,  and
10 mmol/L D-glucose;  adjusted to pH 7.4 with KOH;
320  mOsm)  was  continuously  perfused  at  a  rate  of
0.2  mL/min.  The  tip  of  the  patch-clamp  electrode
was  about  1–2  μm,  and  resistance  was  6–10  MΩ.
The  internal  fluid  in  the  glass  electrode  was
120  mmol/L  potassium  gluconate,  20  mmol/L  KCl,
2  mmol/L  MgCl2,  10  mmol/L  EGTA,  10  mmol/L
HEPES,  5  mmol/L  Na2 ATP,  and  1  mmol/L  CaCl2;
adjusted  to  pH 7.2  with  KOH;  osmotic  pressure  320
mOsm).  The  clamping  voltage  was  set  to  −80  mV,
depolarization  voltage  was  in  steps  of  10  mV  from
−70  mV  to  70  mV  (pulse  duration  of  400  ms),  and
whole-cell  KV current  was  recorded  every  2s.  The
signals were processed and recorded with an EPC-10
amplifier (HEKA Elektronik, Lambrecht, Germany). To
separate  the  BKCa and  KV currents  from  the  total
current,  the  BKCa channel  inhibitors  TEA (1  mmol/L)
and  CTX  (100  nmol/L)  were  added  to  the
extracellular  fluid.  The  current  densities  and  open
probabilities of BKCa and KV were calculated. 

Measurement of Cerebrovascular Contraction

Cerebral  vascular  reactivity  was  measured  as
described previously[25]. Briefly, basilar arteries (2 mm
long)  were  carefully  dissected  free  from  the  brain
and  mounted  on  two  40  μm  stainless  wires  in  the
jaws  of  the  Dual  Wire  Myograph  System  (Danish
Myo Technology A/S, Hinnerup, Denmark) to record
changes  in  isometric  force.  After  the  arteries  were
mounted  and  prepared,  they  were  challenged  with
KCl  (10–100  mmol/L)  or  cumulative  concentrations
(10−9–10−5 mol/L)  of  5-hydroxytryptamine  (5-HT).
Cumulative  concentration  response  curves  were
generated. 

Statistical Analysis

The  results  are  expressed  as  mean  ±  standard
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error.  GraphPad  Prism  5.0  software  (GraphPad
Software  Inc.,  La  Jolla,  CA,  USA)  was  used  for  the
statistical  analysis.  Protein  expression  and  mRNA
levels  were  compared  using  two-way  analysis  of
variance (ANOVA) followed by the unpaired Student’s
t-test.  The  isometric  force  measurement  data  were
analyzed  by  two-way  ANOVA.  A P-value  of  <  0.05
was considered significant. 

RESULTS
 

General Data

Microgravity  simulated  by  HU  resulted  in  a
significantly  lower  soleus  muscle  mass  (P <  0.001).
Soleus  muscle-to-body  mass  ratios  decreased
significantly (P < 0.001) in the HU and HU + MT rats,
which  confirmed  the  efficacy  of  simulated
microgravity  by  HU.  The  data  are  summarized  in
Table 1. 

The Effects of HU on Ca2+ Distribution in VSMCs

Cytoplasmic,  mitochondrial,  and  SR  Ca2+

distribution  and  content  in  cerebral  VSMCs  are
shown  in Figure  1.  After  HU,  cytoplasmic  Ca2+

content significantly increased (P < 0.001) (Figure 1A,
1D)  with  a  significant  decrease  of  Ca2+ in
mitochondria  (Figure  1B, 1E)  and  the  SR  (Figure  1C,
1F)  (P <  0.001)  compared  with  CON  rat  cerebral
VSMCs.  The  chronic  treatment  with  mitoTEMPO
restored cytoplasmic �(P < 0.001),  mitochondrial  (P <
0.01),  and  SR  (P <  0.001)  Ca2+ distribution  and
content in HU + MT rat cerebral VSMCs. 

Effects of HU on Mitochondrial Fission and Fusion

We analyzed mitochondrial  fusion and fission to
investigate  the  mechanism  of  cytoplasmic,
mitochondrial,  and  SR  Ca2+ redistribution  (Figure  2).
TEM  (Figure  2A)  showed  more  long  and  narrow

mitochondria  in  the  HU  rat  cerebral  VSMCs,  while
more  elliptical  mitochondria  were  observed  in  the
CON,  CON  +  MT,  and  HU  +  MT  rat  cerebral  VSMCs
(mitochondria  are  marked  by  white  arrows),
indicating  that  HU  enhanced  mitochondrial  fission
and  that  treatment  with  mitoTEMPO  attenuates
mitochondrial  fission.  The  MFN1/2  protein  and
mRNA levels (Figure 2B, 2F and Figure 2C, 2G) in HU
rat cerebral VSMCs decreased significantly compared
to those in the CON rats (P < 0.001). The DRP1/FIS1
protein  and  mRNA  levels  (Figure  2D, 2H and
Figure  2E, 2I)  were  significantly  higher  in  HU  rat
cerebral arteries than those in the CON rats (P < 0.01
for  protein  and P <  0.001  for  mRNA).  Chronic
treatment with mitoTEMPO significantly upregulated
the expression of MFN1/2 (P < 0.05 for MFN1 mRNA;
P < 0.001 for MFN1/2 protein and MFN2 mRNA) but
decreased the expression of FIS1/DRP1 (P < 0.01 for
protein  and P <  0.001  for  mRNA)  compared  to  the
HU. 

Effects of HU on IP3R Expression

To  investigate  whether  cytoplasmic  Ca2+

redistribution  was  IP3R-dependent,  we  determined
the abundance of the IP3R in HU rat cerebral arteries
(Figure  3).  IP3R  protein  (P <  0.001)  and  mRNA  (P <
0.001)  levels  increased  significantly  (Figure  3A and
3B) in HU rat cerebral arteries compared to the CON.
Immunohistochemical staining revealed that the IP3R
was  more  positive  in  HU  rat  cerebral  VSMCs  than
that in the CON (Figure 3C).  Chronic treatment with
mitoTEMPO  partially  restored  the  enhanced
expression of the IP3R after HU. 

Effects of HU on Plasma Membrane Ion Channels

To  investigate  whether  cytoplasmic  Ca2+

redistribution  induced  by  mitochondrial  oxidative
stress  was  associated  with  changes  in  plasma
membrane K+ channels, we analyzed total K+ current,

Table 1. Body mass (g), soleus mass (mg), and soleus: body mass ratio (mg/g) of rats from the control,
mitoTEMPO-treated control, hindlimb unweighting, and mitotempo-treated hindlimb

unweighting groups (n = 8 in each group)

Group Initial mass (g) Final mass (g) Soleus mass (mg) Soleus: body mass (mg/g)

CON 198.60 ± 1.45 345.85 ± 10.47 134.54 ± 3.62 0.39 ± 0.01

HU 196.73 ± 2.07 336.79 ± 10.74 65.28 ± 1.85*** 0.19 ± 0.01***

CON + MT 199.55 ± 2.67 338.57 ± 8.17 138.48 ± 2.82 0.41 ± 0.01

HU + MT 199.87 ± 1.80 341.89 ± 11.26 74.29 ± 2.12*** 0.22 ± 0.01***

　　Note. CON, control;  HU, hindlimb unweighting; MT, mitoTEMPO; CON+MT, mitoTEMPO-treated control;
HU + MT, mitoTEMPO-treated HU. Values are mean ± standard error. ***P < 0.001 vs. control.
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current densities,  and open probabilities  (Po)  of  the
KV and  BKCa channels  (Figure  4).  Total  K+ current
decreased  (Figure  4A),  whereas  current  densities
and open probabilities  of  KV (Figure 4B and 4C)  and
BKCa (Figure  4D and 4E)  decreased  and  increased,
respectively,  compared  to  control  rats,  in  HU  rat
cerebral  VSMCs,  which  were  restored  by  chronic
treatment with mitoTEMPO. 

Effects of HU on Cerebrovascular Contraction

To  investigate  whether  the  changes  in
cytoplasmic  Ca2+ were  associated  with
cerebrovascular  contraction,  we  studied  the

cerebrovascular  contraction  to  vasoconstrictors
(Figure  5).  Cumulative  increases  in  KCl  and  5-HT
concentrations  induced  concentration-dependent
vasoconstriction  in  basilar  arteries  from  the  four
groups.  Three-week  HU  significantly  enhanced  the
maximal contractile responses to KCl and 5-HT in rat
basilar  arteries  (P <  0.05)  compared  to  the  CON,
which  was  attenuated  by  the  chronic  mitoTEMPO
treatment (P < 0.05). 

DISCUSSION

The  major  findings  of  the  present  study  are:  (1)
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Figure 1. The  effects  of  mitoTEMPO  on  cytoplasmic  (A,  D),  mitochondrial  (B,  E),  and  sarcoplasmic
reticulum (C, F) Ca2+ distribution in rat cerebral vascular smooth muscle cells. CON, control; HU, hindlimb
unweighting;  MT,  mitoTEMPO; CON  +  MT,  mitoTEMPO-treated  control;  HU  +  MT,  mitoTEMPO-treated
HU. Values are mean ± standard error. **P < 0.01 and ***P < 0.001.
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mitochondrial  oxidative  stress  augmented  HU  rat
cerebrovascular  contraction  to  vasoconstrictors  by
regulating  Ca2+ distribution  and  content  in  VSMCs;
(2)  mitochondrial  oxidative  stress  regulated  Ca2+

homeostasis  by  controlling  IP3R  abundance,  Ca2+

storage, mitochondrial fusion/fission, and changes in
plasma membrane ion channels (KV and BKCa)  in HU
rat cerebral VSMCs.

Exposure  to  microgravity  results  in  postflight
cardiovascular  deconditioning  and  orthostatic
intolerance  in  astronauts.  Structural  and  functional
remodeling  of  the  cardiovascular  system  have  been
implicated in this process. We and other authors have
found  increased  myogenic  tone,  enhanced
vasoconstriction,  and  attenuated  endothelium-
dependent  relaxation  in  HU  rat  cerebral
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Figure 2. Effects of mitoTEMPO on mitochondrial fission and fusion (A) and the protein and mRNA levels
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HU. Values are mean ± standard error. *P < 0.05, **P < 0.01, and ***P < 0.001.
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arteries[3,4,6,25].  We  previously  reported  mitochondrial
oxidative  stress  and  ER  stress  in  rat  cerebral

VSMCs[21-23,26].  However,  whether  and  how
mitochondrial  oxidative  stress  regulates  HU  rat

 

CO
N

H
U

CO
N

 +
 M

T

H
U

 +
 M

T

IP3R

GAPDH

CO
N

H
U

CO
N

 +
 M

T

H
U

 +
 M

T

8

6

4

2

0

Re
la

tiv
e 

IP
3
R

 i
n

te
n

si
ty

***
***

CO
N

H
U

CO
N

 +
 M

T

H
U

 +
 M

T

5

4

3

2

1

0

Re
la

tiv
e 

IP
3
R 

m
RN

A 
le

ve
l

***

***

A B

CON HU CON + MT HU + MT

50 μm 50 μm 50 μm 50 μm

C

Figure 3. The effects of mitoTEMPO on protein (A) and mRNA (B) levels of the inositol 1,4,5-trisphosphate
receptor (IP3R) and immunohistochemistry for IP3R (C) in rat cerebral vascular smooth muscle cells. CON,
control; HU, hindlimb unweighting; MT, mitoTEMPO; CON + MT, mitoTEMPO-treated control; HU + MT,
mitoTEMPO-treated HU. Values are mean ± standard error. ***P < 0.001.

 

CON

CON + MT

HU

HU + MT

600

500

400

300

200

100

0

To
ta

l 
K

+
 c

u
rr

e
n

t 
(p

A
)

−70 −50 −30 −10 10 30 50 70
Vm (mV) Vm (mV) Vm (mV)

Cerebral artery total current

NS

*
*

*
*

*

A
200

150

100

50

0

−70 −50 −30 −10 10 30 50 70

Cerebral artery KV current

NS

*

*
*

K
V
 c

u
rr

e
n

t 
(p

A
)

B
1.0

0.8

0.6

0.4

0.2

−70 −50 −30 −10 10 30 50 70

Cerebral artery KV current

NS

*
* *

*
*

N
P

o
C

NS

*
*

*

1.0

0.8

0.6

0.4

0.2

N
P

o

−70 −50 −30 −10 10 30 50 70

Cerebral artery BKCa current

E

−70 −50 −30 −10 10

150

100

50

0

30 50 70
 Vm (mV)  Vm (mV)

Cerebral artery BKCa current

NS

*
*

*
*

*

B
K

C
a
 c

u
rr

e
n

t 
(p

A
)

D

Figure 4. Effects  of  mitoTEMPO  on  total  K+ current  (A),  current  activation,  and  opening  probabilities  of
voltage-gated potassium (KV)  channels (B, C),  and Ca2+-activated K+ (BKCa)  channels (D, E) in rat cerebral
vascular  smooth  muscle  cells.  CON,  control;  HU,  hindlimb  unweighting;  MT,  mitoTEMPO;  CON  +  MT,
mitoTEMPO-treated control;  HU + MT, mitoTEMPO-treated HU. Values are mean ± standard error. *P <
0.05, **P < 0.01, and ***P < 0.001.

Calcium homeostasis during microgravity 209



cerebrovascular  reactivity  remains  unclear.  The
dynamic  changes  in  cytoplasmic  Ca2+ are  a  critical
mechanism regulating vascular  tone and contraction.
During  microgravity,  large-conductance  calcium-
activated K+ (BKCa) and L-type voltage-dependent Ca2+

(CaL)  channels  were  activated  in  VSMCs,  which  are
associated  with  apoptosis[10,11].  The  CaL currents
densities  increased  significantly  in  4-week  HU  rat
cerebral  VSMCs,  and  therefore  induced  significantly
higher  cytoplasmic  Ca2+ and  enhanced
vasoconstriction[27].  KV channels  are  expressed  in
blood  vessels  and  are  key  regulators  of  vascular
tension. An increase in cytoplasmic Ca2+ concentration
inactivates  KV channels  and  induces  vascular
contraction[28].  The  BKCa channels  in  the  vasculature
located  close  to  the  IP3Rs  in  the  SR  and  the  IP3Rs
stimulate the opening of BKCa channels dependent on
Ca2+ released from IP3Rs as in VSMCs[29]. In the current
study,  KV and  BKCa current  densities  and  open
probabilities,  which  are  both  important  Ca2+-
regulating  plasma  ion  channels,  decreased  and
increased respectively;  however,  these changes were
restored  by  the  mitochondrial-targeted  antioxidant
mitoTEMPO. This means that mitochondrial oxidative
stress  regulates  cytoplasmic  Ca2+ concentration
through  the  activities  of  plasma  ion  channels,  which
play  roles  in  Ca2+ homeostasis  in  VSMCs  exposed  to
microgravity or simulated microgravity.

The  processes  influencing  cytoplasmic  Ca2+ are
important  regulators  of  vascular  function  under
physiological  and  pathophysiological  settings.  The
mitochondria  and  SR  are  the  major  Ca2+ stores  in
VSMCs,  which  regulate  Ca2+ homeostasis  in
intracellular  organelles  by  Ca2+ sequestering
activities[13].  The  close  connection  between
mitochondria  and  the  SR  plays  an  important  role  in

mitochondrial  dynamics,  ATP  production,  lipid
synthesis,  and  Ca2+ signaling[30,31].  Mitochondria
regulate  intracellular  Ca2+ content  through  Ca2+

uptake  from  SR via the  SR-mitochondrial
membrane[32]. The rate of mitochondrial Ca2+ uptake
is  affected  by  the  IP3R  and  MFN2[33,34],  which
maintain  the  balance  between  extracellular  and
intracellular  [Ca2+][13].  The  IP3R  is  a  pivotal  Ca2+

release  channel  located  perinuclearly  and
peripherally in the SR[35]. ER/SR stress facilitates Ca2+

release  from  the  SR  through  the  IP3R[14],  which
causes  Ca2+ uptake  by  mitochondria.  Increased
mitochondrial Ca2+ influx leads to mitochondrial Ca2+

overload  and  opening  of  the  mitochondrial
permeability  transition  pore,  eventually  triggering
cell  death[36,37].  Overloading  of  Ca2+ within  the
mitochondrial  matrix  inhibits  ATP  production  but
promotes  mitochondrial  ROS production[38,39].  In  the
current study, increased IP3R protein abundance and
decreased  SR  Ca2+ in  HU  rat  cerebral  VSMCs
suggested that IP3R-dependent Ca2+ release from the
SR  was  activated  and  increased  cytoplasmic  Ca2+

contributed to enhance vasoconstriction.
The elevated ROS levels in mitochondria and the

SR  send  feedback  for  SR  membrane  Ca2+ release  by
stimulating  the  IP3R[40,41],  and  increased  ROS
production  enhances  the  rate  of  mitochondrial  Ca2+

uptake and has a destructive effect on mitochondria,
leading to changes in the state of mitochondria from
fusion to fission by inducing the expression of DRP1
and  FIS1[19,42].  Mitochondrial  fusion  provides  the
proper  environment  for  Ca2+ regulation  and  cellular
metabolism, which is important for Ca2+ homeostasis
in  VSMCs[19,43].  MFN1  and  MFN2  play  critical  roles
maintaining  the  correct  mitochondrial  and  the  SR-
mitochondria  connection,  respectively[33,44].  MFN2,
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which  is  located  in  the  outer  mitochondrial
membrane  and  SR  membrane,  tethers  the  SR  to
mitochondria  and  mediates  Ca2+ signal  transfer
between  the  two  organelles  together  with  the
IP3R[45].  Once  the  mitochondrial  dynamics  have
shifted  from  fusion  to  fission,  cell  death  occurred
caused by over-expression of FIS1, which depends on
SR-mitochondria;  Ca2+ signal  transfer[46] and  DRP1-
induced  mitochondrial  fragmentation[47].  The  Ca2+

redistribution  leads  to  increased  cytoplasmic  Ca2+

and  an  enhanced  contractile  response  to
vasoconstrictors. Consistent with these findings, our
present  study  showed  that  microgravity  simulated
by  HU  changed  the  morphological  characteristics  of
the mitochondria from elliptical to long and narrow,
along  with  upregulated  expression  of  the
mitochondrial  fission  proteins  (DRP1  and  FIS1)  and
decreased  levels  of  the  fusion  proteins  (MFN1  and
MFN2),  which  were  reversed  by  a  mitochondrial-
targeted  antioxidant.  This  finding  suggests  that
mitochondrial  oxidative  stress  during  simulated
microgravity  shifted  the  mitochondrial  state  from
fusion to fission. Together with our previous findings
that microgravity simulated by HU is associated with
oxidative stress and mitochondrial oxidative stress in
cerebral  VSMCs[21,22,48],  we  infer  that  Ca2+ and  ROS
overloading  in  mitochondria  during  simulated
microgravity  leads  to  mitochondrial  fission  by
regulating  the  expression  of  mitochondrial  fission
and  fusion  proteins.  Therefore,  mitochondrial
oxidative  stress  induced  by  3-weeks  of  HU
stimulated Ca2+ release from the SR by upregulating
IP3R  expression,  impairing  mitochondrial  Ca2+

uptake, and undergoing mitochondrial fission, which
resulted in the accumulation of Ca2+ in the cytoplasm
and enhanced vasoconstriction.

Interestingly,  our  recent  study  reported  that  ER
stress  induces  activation  of  the  iNOS/NO-NF-κB/IκB
pathway  and  plays  a  key  role  inducing  endothelial
inflammation  and  apoptosis[49].  Whether  SR  stress
affects  calcium  signaling  in  cerebral  VSMCs  during
microgravity  simulation  needs  further  investigation.
Although  we  clarified  that  changes  in  calcium
homeostasis caused by mitochondrial oxidative stress
contributed  to  enhance  vasoconstriction  during
simulated  microgravity,  we  did  not  investigate  the
effects  of  mitochondrial  oxidative  stress  on  SR
function.  Further  studies  are  needed  to  investigate
functional  alterations  and  the  underlying  mechanism
of mitochondria and the SR during microgravity.

In  conclusion,  mitochondrial  oxidative  stress
induced  by  simulated  microgravity  increased
cytoplasmic  Ca2+ by  impairing  mitochondrial

fusion/fission-dependent  Ca2+ uptake,  enhancing
IP3R-dependent  SR  Ca2+ release,  and  regulating  the
functions  of  plasma  KV and  BKCa channels.  A
mitochondrial-targeted  antioxidant  that  alleviated
mitochondrial  oxidative  stress  restored  Ca2+

homeostasis  and  vascular  contraction  to  the
agonists.  The  current  results  demonstrate  that
mitochondrial  oxidative  stress  contributes  to
vasoconstriction  by  regulating  calcium  homeostasis
in  rat  cerebrovascular  smooth  muscle  cells  exposed
to simulated microgravity. 
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