[1] Buck RC, Franklin J, Berger U, et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess, 2011; 7, 513−41. doi:  10.1002/ieam.258
[2] Glüge J, Scheringer M, Cousins IT, et al. An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environ Sci-Proc Imp, 2020; 22, 2345−73.
[3] Rumsby PC, Mclaughlin CL, Hall T. Perfluorooctane sulphonate and perfluorooctanoic acid in drinking and environmental waters. Philos T Roy Soc A-Math, Phy, Eng Sci, 2009; 367, 4119−36.
[4] Trudel D, Horowitz L, Wormuth M, et al. Estimating consumer exposure to PFOS and PFOA. Risk Anal, 2008; 28, 251−69. doi:  10.1111/j.1539-6924.2008.01017.x
[5] Zhang T, Sun HW, Wu Q, et al. Perfluorochemicals in meat, eggs and indoor dust in China: assessment of sources and pathways of human exposure to perfluorochemicals. Environ Sci Technol, 2010; 44, 3572−9. doi:  10.1021/es1000159
[6] Steenland K, Tinker S, Frisbee S, et al. Association of perfluorooctanoic acid and perfluorooctane sulfonate with serum lipids among adults living near a chemical plant. American J Epidemiol, 2009; 170, 1268−78. doi:  10.1093/aje/kwp279
[7] Rosenmai AK, Taxvig C, Svingen T, et al. Fluorinated alkyl substances and technical mixtures used in food paper-packaging exhibit endocrine-related activity in vitro. Andrology, 2016; 4, 662−72. doi:  10.1111/andr.12190
[8] Cardenas A, Hivert MF, Gold DR, et al. Associations of perfluoroalkyl and polyfluoroalkyl substances with incident diabetes and microvascular disease. Diabetes Care, 2019; 42, 1824−32. doi:  10.2337/dc18-2254
[9] Lin CY, Chen PC, Lin YC, et al. Association among serum perfluoroalkyl chemicals, glucose homeostasis, and metabolic syndrome in adolescents and adults. Diabetes Care, 2009; 32, 702−7. doi:  10.2337/dc08-1816
[10] Conder JM, Hoke RA, De Wolf W, et al. Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds. Environ Sci Technol, 2008; 42, 995−1003. doi:  10.1021/es070895g
[11] Gaballah S, Swank A, Sobus JR, et al. Evaluation of developmental toxicity, developmental neurotoxicity, and tissue dose in Zebrafish exposed to GenX and other PFAS. Environ Health Perspect, 2020; 128, 47005. doi:  10.1289/EHP5843
[12] Liu X, Zhang L, Chen LK, et al. Structure-based investigation on the association between perfluoroalkyl acids exposure and both gestational diabetes mellitus and glucose homeostasis in pregnant women. Environ Int, 2019; 127, 85−93. doi:  10.1016/j.envint.2019.03.035
[13] Caballero B. Humans against obesity: Who will win?. Adv Nutr, 2019; 10, S4−9. doi:  10.1093/advances/nmy055
[14] Kumanyika S, Dietz WH. Solving population-wide obesity - progress and future prospects. N Engl J Med, 2020; 383, 2197−200. doi:  10.1056/NEJMp2029646
[15] Lauby-Secretan B, Scoccianti C, Loomis D, et al. Body fatness and cancer--viewpoint of the IARC working group. N Engl J Med, 2016; 375, 794-8.
[16] Wormser D, Kaptoge S, Di Angelantonio E, et al. Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: collaborative analysis of 58 prospective studies. Lancet, 2011; 377, 1085−95. doi:  10.1016/S0140-6736(11)60105-0
[17] Piché ME, Poirier P, Lemieux I, et al. Overview of epidemiology and contribution of obesity and body fat distribution to cardiovascular disease: an update. Prog Cardiovasc Dis, 2018; 61, 103−13. doi:  10.1016/j.pcad.2018.06.004
[18] Pischon T, Boeing H, Hoffmann K, et al. General and abdominal adiposity and risk of death in Europe. N Eng J Med, 2008; 359, 2105−20. doi:  10.1056/NEJMoa0801891
[19] Janis JA, Rifas-Shiman SL, Seshasayee SM, et al. Plasma concentrations of per- and polyfluoroalkyl substances and body composition from mid-childhood to early adolescence. J Clin Endocrinol Metab, 2021; 106, e3760−70. doi:  10.1210/clinem/dgab187
[20] Cardenas A, Hauser R, Gold DR, et al. Association of perfluoroalkyl and polyfluoroalkyl substances with adiposity. JAMA Netw Open, 2018; 1, e181493. doi:  10.1001/jamanetworkopen.2018.1493
[21] Calafat AM, Wong LY, Kuklenyik Z, et al. Polyfluoroalkyl chemicals in the U. S. population: data from the National Health and Nutrition Examination Survey (NHANES) 2003-2004 and comparisons with NHANES 1999-2000. Environ Health Perspect, 2007; 115, 1596−602. doi:  10.1289/ehp.10598
[22] Dos Santos MR, Da Fonseca GWP, Sherveninas LP, et al. Android to gynoid fat ratio and its association with functional capacity in male patients with heart failure. ESC Heart Fail, 2020; 7, 1101−8. doi:  10.1002/ehf2.12657
[23] Min Y, Ma XG, Sankaran K, et al. Sex-specific association between gut microbiome and fat distribution. Nat Commun, 2019; 10, 2408. doi:  10.1038/s41467-019-10440-5
[24] Xiao ZY, Guo B, Gong J, et al. Sex- and age-specific percentiles of body composition indices for Chinese adults using dual-energy X-ray absorptiometry. Eur J Nutr, 2017; 56, 2393−406. doi:  10.1007/s00394-016-1279-9
[25] Shan ZL, Guo YJ, Hu FB, et al. Association of low-carbohydrate and low-fat diets with mortality among US adults. JAMA Intern Med, 2020; 180, 513−23. doi:  10.1001/jamainternmed.2019.6980
[26] Motevalizadeh E, Díaz-López A, MartÍN-Luján F, et al. Prenatal factors associated with maternal cardiometabolic risk markers during pregnancy: the ECLIPSES study. Nutrients, 2023; 15, 1135. doi:  10.3390/nu15051135
[27] Sen P, Qadri S, Luukkonen PK, et al. Exposure to environmental contaminants is associated with altered hepatic lipid metabolism in non-alcoholic fatty liver disease. J Hepatol, 2022; 76, 283−93. doi:  10.1016/j.jhep.2021.09.039
[28] Attanasio R. Association between perfluoroalkyl acids and liver function: data on sex differences in adolescents. Data Brief, 2019; 27, 104618. doi:  10.1016/j.dib.2019.104618
[29] Attanasio R. Sex differences in the association between perfluoroalkyl acids and liver function in US adolescents: analyses of NHANES 2013-2016. Environ Pollut, 2019; 254, 113061. doi:  10.1016/j.envpol.2019.113061
[30] Mora AM, Oken E, Rifas-Shiman SL, et al. Prenatal exposure to perfluoroalkyl substances and adiposity in early and mid-childhood. Environ Health Perspect, 2017; 125, 467−73. doi:  10.1289/EHP246
[31] Braun JM, Chen A, Romano ME, et al. Prenatal perfluoroalkyl substance exposure and child adiposity at 8 years of age: the HOME study. Obesity, 2016; 24, 231−7. doi:  10.1002/oby.21258
[32] Chen Q, Zhang X, Zhao YJ, et al. Prenatal exposure to perfluorobutanesulfonic acid and childhood adiposity: a prospective birth cohort study in Shanghai, China. Chemosphere, 2019; 226, 17−23. doi:  10.1016/j.chemosphere.2019.03.095
[33] Domazet SL, Jensen TK, Wedderkopp N, et al. Exposure to perfluoroalkylated substances (PFAS) in relation to fitness, physical activity, and adipokine levels in childhood: the European youth heart study. Environ Res, 2020; 191, 110110. doi:  10.1016/j.envres.2020.110110
[34] Bloom MS, Commodore S, Ferguson PL, et al. Association between gestational PFAS exposure and Children's adiposity in a diverse population. Environ Res, 2022; 203, 111820. doi:  10.1016/j.envres.2021.111820
[35] Braun JM, Papandonatos GD, Li N, et al. Physical activity modifies the relation between gestational perfluorooctanoic acid exposure and adolescent cardiometabolic risk. Environ Res, 2022; 214, 114021. doi:  10.1016/j.envres.2022.114021
[36] Liu Y, Li N, Papandonatos GD, et al. Exposure to per- and polyfluoroalkyl substances and adiposity at age 12 years: evaluating periods of susceptibility. Environ Sc Technol, 2020; 54, 16039−49. doi:  10.1021/acs.est.0c06088
[37] Thomsen ML, Henriksen LS, Tinggaard J, et al. Associations between exposure to perfluoroalkyl substances and body fat evaluated by DXA and MRI in 109 adolescent boys. Environ Health, 2021; 20, 73. doi:  10.1186/s12940-021-00758-3
[38] Ding N, Karvonen-Gutierrez CA, Herman WH, et al. Perfluoroalkyl and polyfluoroalkyl substances and body size and composition trajectories in midlife women: the study of women's health across the nation 1999-2018. Int J Obes, 2021; 45, 1937−48. doi:  10.1038/s41366-021-00848-9
[39] Chen ZH, Yang TY, Walker DI, et al. Dysregulated lipid and fatty acid metabolism link perfluoroalkyl substances exposure and impaired glucose metabolism in young adults. Environ Int, 2020; 145, 106091. doi:  10.1016/j.envint.2020.106091
[40] Lind PM, Lind L, Salihovic S, et al. Serum levels of perfluoroalkyl substances (PFAS) and body composition - a cross-sectional study in a middle-aged population. Environ Res, 2022; 209, 112677. doi:  10.1016/j.envres.2022.112677
[41] Schulz K, Silva MR, Klaper R. Distribution and effects of branched versus linear isomers of PFOA, PFOS, and PFHxS: a review of recent literature. Sci Total Environ, 2020; 733, 139186. doi:  10.1016/j.scitotenv.2020.139186
[42] Zeeshan M, Yang YQ, Zhou Y, et al. Incidence of ocular conditions associated with perfluoroalkyl substances exposure: isomers of C8 Health Project in China. Environ Int, 2020; 137, 105555. doi:  10.1016/j.envint.2020.105555
[43] Chen FF, Yin SS, Kelly BC, et al. Isomer-specific transplacental transfer of perfluoroalkyl acids: results from a survey of paired maternal, cord sera, and placentas. Environ Sci Technol, 2017; 51, 5756−63. doi:  10.1021/acs.est.7b00268
[44] Liu YX, Li A, Buchanan S, et al. Exposure characteristics for congeners, isomers, and enantiomers of perfluoroalkyl substances in mothers and infants. Environ Int, 2020; 144, 106012. doi:  10.1016/j.envint.2020.106012
[45] Upham BL, Deocampo ND, Wurl B, et al. Inhibition of gap junctional intercellular communication by perfluorinated fatty acids is dependent on the chain length of the fluorinated tail. Int J Cancer, 1998; 78, 491−5. doi:  10.1002/(SICI)1097-0215(19981109)78:4<491::AID-IJC16>3.0.CO;2-9
[46] Kudo N, Suzuki-Nakajima E, Mitsumoto A, et al. Responses of the liver to perfluorinated fatty acids with different carbon chain length in male and female mice: in relation to induction of hepatomegaly, peroxisomal beta-oxidation and microsomal 1-acylglycerophosphocholine acyltransferase. Biol Pharm Bull, 2006; 29, 1952−7. doi:  10.1248/bpb.29.1952
[47] Gebbink WA, Berger U, Cousins IT. Estimating human exposure to PFOS isomers and PFCA homologues: the relative importance of direct and indirect (precursor) exposure. Environ Int, 2015; 74, 160−9. doi:  10.1016/j.envint.2014.10.013
[48] Zhang HM, Yolton K, Webster GM, et al. Prenatal and childhood perfluoroalkyl substances exposures and children's reading skills at ages 5 and 8years. Environ Int, 2018; 111, 224−31. doi:  10.1016/j.envint.2017.11.031
[49] Calafat AM, Kato K, Hubbard K, et al. Legacy and alternative per- and polyfluoroalkyl substances in the U. S. general population: paired serum-urine data from the 2013-2014 National Health and Nutrition Examination Survey. Environ Int, 2019; 131, 105048. doi:  10.1016/j.envint.2019.105048
[50] Lau C, Anitole K, Hodes C, et al. Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci, 2007; 99, 366−94. doi:  10.1093/toxsci/kfm128
[51] Oberfield JL, Collins JL, Holmes CP, et al. A peroxisome proliferator-activated receptor gamma ligand inhibits adipocyte differentiation. Proc Natl Acad Sci U S A, 1999; 96, 6102−6. doi:  10.1073/pnas.96.11.6102
[52] Hines EP, White SS, Stanko JP, et al. Phenotypic dichotomy following developmental exposure to perfluorooctanoic acid (PFOA) in female CD-1 mice: low doses induce elevated serum leptin and insulin, and overweight in mid-life. Mol Cell Endocrinol, 2009; 304, 97−105. doi:  10.1016/j.mce.2009.02.021
[53] Kato K, Wong LY, Jia LT, et al. Trends in exposure to polyfluoroalkyl chemicals in the U. S. population: 1999-2008. Environ Sci Technol, 2011; 45, 8037−45. doi:  10.1021/es1043613
[54] Joensen UN, Veyrand B, Antignac JP, et al. PFOS (perfluorooctanesulfonate) in serum is negatively associated with testosterone levels, but not with semen quality, in healthy men. Hum Reprod, 2013; 28, 599−608. doi:  10.1093/humrep/des425
[55] Jensen AA, Leffers H. Emerging endocrine disrupters: perfluoroalkylated substances. Int J Androl, 2008; 31, 161−9. doi:  10.1111/j.1365-2605.2008.00870.x
[56] Ding N, Harlow SD, Randolph JR JF, et al. Perfluoroalkyl and polyfluoroalkyl substances (PFAS) and their effects on the ovary. Hum Reprod Update, 2020; 26, 724−52. doi:  10.1093/humupd/dmaa018
[57] Liu P, Ji YT, Yuen T, et al. Blocking FSH induces thermogenic adipose tissue and reduces body fat. Nature, 2017; 546, 107−12. doi:  10.1038/nature22342
[58] Karpe F, Pinnick KE. Biology of upper-body and lower-body adipose tissue--link to whole-body phenotypes. Nat Rev Endocrinol, 2015; 11, 90-100.