[1] WHO. Global tuberculosis report 2023. Geneva: WHO. https://www.who.int/publications/i/item/9789240083851. [2024-08-22].
[2] Kyu HH, Maddison ER, Henry NJ, et al. Global, regional, and national burden of tuberculosis, 1990-2016: results from the Global Burden of Diseases, Injuries, and Risk Factors 2016 Study. Lancet Infect Dis, 2018; 18, 1329−49. doi:  10.1016/S1473-3099(18)30625-X
[3] Sun QF, Li SS, Gao MQ, et al. Therapeutic strategies for tuberculosis: progress and lessons learned. Biomed Environ Sci, 2024; 37, 1310−23.
[4] Uplekar M, Weil D, Lonnroth K, et al. WHO's new end TB strategy. Lancet, 2015; 385, 1799−801. doi:  10.1016/S0140-6736(15)60570-0
[5] Qin TY, Hao Y, Wu Y, et al. Association between averaged meteorological factors and tuberculosis risk: a systematic review and meta-analysis. Environ Res, 2022; 212, 113279. doi:  10.1016/j.envres.2022.113279
[6] Popovic I, Magalhaes RJS, Ge EJ, et al. A systematic literature review and critical appraisal of epidemiological studies on outdoor air pollution and tuberculosis outcomes. Environ Res, 2019; 170, 33−45. doi:  10.1016/j.envres.2018.12.011
[7] Li JX, Luan QY, Li BB, et al. Outdoor environmental exposome and the burden of tuberculosis: findings from nearly two million adults in northwestern China. J Hazard Mater, 2023; 459, 132222. doi:  10.1016/j.jhazmat.2023.132222
[8] Xu M, Li Y, Liu B, et al. Temperature and humidity associated with increases in tuberculosis notifications: a time-series study in Hong Kong. Epidemiol Infect, 2021; 149, e8. doi:  10.1017/S0950268820003040
[9] Xiang K, Xu ZW, Hu YQ, et al. Association between ambient air pollution and tuberculosis risk: a systematic review and meta-analysis. Chemosphere, 2021; 277, 130342. doi:  10.1016/j.chemosphere.2021.130342
[10] Li ZQ, Mao XH, Liu Q, et al. Long-term effect of exposure to ambient air pollution on the risk of active tuberculosis. Int J Infect Dis, 2019; 87, 177−84. doi:  10.1016/j.ijid.2019.07.027
[11] Liu FQ, Zhang ZX, Chen HY, et al. Associations of ambient air pollutants with regional pulmonary tuberculosis incidence in the central Chinese province of Hubei: a Bayesian spatial-temporal analysis. Environ Health, 2020; 19, 51. doi:  10.1186/s12940-020-00604-y
[12] Sinharay R, Gong JC, Barratt B, et al. Respiratory and cardiovascular responses to walking down a traffic-polluted road compared with walking in a traffic-free area in participants aged 60 years and older with chronic lung or heart disease and age-matched healthy controls: a randomised, crossover study. Lancet, 2018; 391, 339−49. doi:  10.1016/S0140-6736(17)32643-0
[13] Hahad O, Lelieveld J, Birklein F, et al. Ambient air pollution increases the risk of cerebrovascular and neuropsychiatric disorders through induction of inflammation and oxidative stress. Int J Mol Sci, 2020; 21, 4306. doi:  10.3390/ijms21124306
[14] Lee PC, Wu CD, Tsai HJ, et al. Residential greenness and birth outcomes: evaluating the mediation and interaction effects of particulate air pollution. Ecotoxicol Environ Saf, 2021; 211, 111915. doi:  10.1016/j.ecoenv.2021.111915
[15] Nieuwenhuijsen MJ, Khreis H, Triguero-Mas M, et al. Fifty shades of green: pathway to healthy urban living. Epidemiology, 2017; 28, 63−71. doi:  10.1097/EDE.0000000000000549
[16] Dimala CA, Kadia BM. A systematic review and meta-analysis on the association between ambient air pollution and pulmonary tuberculosis. Sci Rep, 2022; 12, 11282. doi:  10.1038/s41598-022-15443-9
[17] Ge EJ, Gao JH, Ren ZP, et al. Greenness exposure and all-cause mortality during multi-drug resistant tuberculosis treatment: a population-based cohort study. Sci Total Environ, 2021; 771, 145422. doi:  10.1016/j.scitotenv.2021.145422
[18] Patel CJ, Ioannidis JPA. Studying the elusive environment in large scale. JAMA, 2014; 311, 2173−4. doi:  10.1001/jama.2014.4129
[19] Chen GH, Song GX, Jiang LL, et al. Interaction between ambient particles and ozone and its effect on daily mortality. Biomed Environ Sci, 2007; 20, 502−5.
[20] Wang MZ, Zheng S, Wang SG, et al. The weather temperature and air pollution interaction and its effect on hospital admissions due to respiratory system diseases in western China. Biomed Environ Sci, 2013; 26, 403−7.
[21] Zhan ZY, Fang HY, Xu XY, et al. Interactions of particulate matter with temperature, heat index and relative humidity on pediatric hand, foot, and mouth disease in a subtropical city. Environ Pollut, 2023; 336, 122385. doi:  10.1016/j.envpol.2023.122385
[22] Guo YN, Yang LS, Li HR, et al. County level study of the interaction effect of PM2.5 and climate sustainability on mortality in China. Front Public Health, 2023; 10, 1036272. doi:  10.3389/fpubh.2022.1036272
[23] Liu C, Chen RJ, Sera F, et al. Interactive effects of ambient fine particulate matter and ozone on daily mortality in 372 cities: two stage time series analysis. BMJ, 2023; 383, e075203.
[24] Yang L, Chen H, Gao HY, et al. Prenatal and postnatal early life exposure to greenness and particulate matter of different size fractions in relation to childhood rhinitis - a multi-center study in China. Sci Total Environ, 2024; 938, 173402. doi:  10.1016/j.scitotenv.2024.173402
[25] Yuval, Levi Y, Broday DM. Revealing causality in the associations between meteorological variables and air pollutant concentrations. Environ Pollut, 2024; 345, 123526. doi:  10.1016/j.envpol.2024.123526
[26] Gordon CJ. Role of environmental stress in the physiological response to chemical toxicants. Environ Res, 2003; 92, 1−7. doi:  10.1016/S0013-9351(02)00008-7
[27] Wang Y, Wang M, Wu YM, et al. Exploring the effect of ecological land structure on PM2.5: a panel data study based on 277 prefecture-level cities in China. Environ Int, 2023; 174, 107889. doi:  10.1016/j.envint.2023.107889
[28] Schwaab J, Meier R, Mussetti G, et al. The role of urban trees in reducing land surface temperatures in European cities. Nat Commun, 2021; 12, 6763. doi:  10.1038/s41467-021-26768-w
[29] Iungman T, Cirach M, Marando F, et al. Cooling cities through urban green infrastructure: a health impact assessment of European cities. Lancet, 2023; 401, 577−89. doi:  10.1016/S0140-6736(22)02585-5
[30] Shanghai Statistics Bureau. Shanghai statistical yearbook 2023. https://tjj.sh.gov.cn/tjnj/20240321/5a35a44acace471f87c75393133fa142.html. [2024-07-13]. (In Chinese)
[31] Ministry of Ecology and Environment of the People's Republic of China. Technical regulation on ambient air quality index (on trial). https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201203/t20120302_224166.shtml. [2024-12-29]. (In Chinese)
[32] Furin J, Cox H, Pai M. Tuberculosis. Lancet, 2019; 393, 1642−56. doi:  10.1016/S0140-6736(19)30308-3
[33] National Health and Family Planning Commission of the People's Republic of China. Classification of tuberculosis, WS196-2017. Electronic Journal of Emerging Infectious Diseases, 2018. (In Chinese)
[34] Xiong Y, Yang MX, Wang ZZ, et al. Association of daily exposure to air pollutants with the risk of tuberculosis in Xuhui district of Shanghai, China. Int J Environ Res Public Health, 2022; 19, 6085. doi:  10.3390/ijerph19106085
[35] Zhu S, Xia L, Wu JL, et al. Ambient air pollutants are associated with newly diagnosed tuberculosis: a time-series study in Chengdu, China. Sci Total Environ, 2018; 631-632, 47-55.
[36] Zhang XY, Hou FS, Li XS, et al. Study of surveillance data for class B notifiable disease in China from 2005 to 2014. Int J Infect Dis, 2016; 48, 7−13. doi:  10.1016/j.ijid.2016.04.010
[37] Wei J, Li ZQ, Xue WH, et al. The ChinaHighPM10 dataset: generation, validation, and spatiotemporal variations from 2015 to 2019 across China. Environ Int, 2021; 146, 106290. doi:  10.1016/j.envint.2020.106290
[38] Wei J, Li ZQ, Li K, et al. Full-coverage mapping and spatiotemporal variations of ground-level ozone (O3) pollution from 2013 to 2020 across China. Remote Sens Environ, 2022; 270, 112775. doi:  10.1016/j.rse.2021.112775
[39] Wei J, Li ZQ, Lyapustin A, et al. Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: spatiotemporal variations and policy implications. Remote Sens Environ, 2021; 252, 112136. doi:  10.1016/j.rse.2020.112136
[40] Wei J, Li ZQ, Cribb M, et al. Improved 1 km resolution PM2.5 estimates across China using enhanced space-time extremely randomized trees. Atmos Chem Phys, 2020; 20, 3273−89. doi:  10.5194/acp-20-3273-2020
[41] Wei J, Liu S, Li ZQ, et al. Ground-level NO2 surveillance from space across China for high resolution using interpretable spatiotemporally weighted artificial intelligence. Environ Sci Technol, 2022; 56, 9988−98. doi:  10.1021/acs.est.2c03834
[42] Wei J, Li ZQ, Wang J, et al. Ground-level gaseous pollutants (NO2, SO2, and CO) in China: daily seamless mapping and spatiotemporal variations. Atmos Chem Phys, 2023; 23, 1511−32. doi:  10.5194/acp-23-1511-2023
[43] Wei J, Li ZQ. ChinaHighSO2: high-resolution and high-quality ground-level SO2 dataset for China (2013-2023). https://data.tpdc.ac.cn/zh-hans/data/7630b0a2-58d7-4093-bd48-bbe69ddec7fd. [2024-08-22]. (In Chinese)
[44] Wei J, Li ZQ. ChinaHighPM2.5: high-resolution and high-quality ground-level PM2.5 dataset for China (2000-2023). https://data.tpdc.ac.cn/zh-hans/data/6168e75d-93ab-4e4a-b7ff-33152e49d0bf. [2024-08-22]. (In Chinese)
[45] Wei J, Li ZQ. ChinaHighO3: high-resolution and high-quality ground-level MDA8 O3 dataset for China (2000-2023). https://data.tpdc.ac.cn/zh-hans/data/87753867-77c8-42f1-b2e6-da569679635f. [2024-08-22]. (In Chinese)
[46] Wei J, Li ZQ. ChinaHighPM10: high-resolution and high-quality ground-level PM10 dataset for China (2000-2023). https://data.tpdc.ac.cn/zh-hans/data/30b46d2f-78ee-4f3e-88ad-690383d47df5. [2024-08-22]. (In Chinese)
[47] Wei J, Li ZQ. ChinaHighNO2: high-resolution and high-quality ground-level NO2 dataset for China (2008-2023). https://data.tpdc.ac.cn/zh-hans/data/cdd719d1-e0c0-49be-9f20-6a0ba54c8b38. [2024-08-22]. (In Chinese)
[48] Wei J, Li ZQ. ChinaHighCO: High-resolution and High-quality Ground-level CO dataset for China (2013-2023). https://data.tpdc.ac.cn/en/data/dab9def0-ff3b-4195-b5ad-34eafb192f05. [2024-08-22].
[49] Yang K, He J, Tang W, et al. China meteorological forcing dataset (1979-2018). https://dx. doi.org/10.11888/AtmosphericPhysics.tpe.249369.file. [2024-08-22].
[50] He J, Yang K, Tang WJ, et al. The first high-resolution meteorological forcing dataset for land process studies over China. Sci Data, 2020; 7, 25. doi:  10.1038/s41597-020-0369-y
[51] Yang K, He J, Tang WJ, et al. On downward shortwave and longwave radiations over high altitude regions: observation and modeling in the Tibetan Plateau. Agr Forest Meteorol, 2010; 150, 38−46. doi:  10.1016/j.agrformet.2009.08.004
[52] Yin Q, Wang JF. A better indicator to measure the effects of meteorological factors on cardiovascular mortality: heat index. Environ Sci Pollut Res, 2018; 25, 22842−9. doi:  10.1007/s11356-018-2396-1
[53] Li HW, Cao Y, Xiao JF, et al. A daily gap-free normalized difference vegetation index dataset from 1981 to 2023 in China. Sci Data, 2024; 11, 527. doi:  10.1038/s41597-024-03364-3
[54] Heo S, Bell ML. The influence of green space on the short-term effects of particulate matter on hospitalization in the U. S. for 2000-2013. Environ Res, 2019; 174, 61−8. doi:  10.1016/j.envres.2019.04.019
[55] Gasparrini A. Distributed lag Linear and non-linear models in R: the package DLNM. J Stat Softw, 2011; 43, 1−20.
[56] Gasparrini A. Modeling exposure-lag-response associations with distributed lag non-linear models. Stat Med, 2014; 33, 881−99. doi:  10.1002/sim.5963
[57] Sun SH, Chang QX, He JY, et al. The association between air pollutants, meteorological factors and tuberculosis cases in Beijing, China: a seven-year time series study. Environ Res, 2023; 216, 114581. doi:  10.1016/j.envres.2022.114581
[58] Li WX, Wang XD, Bi B, et al. Influence of temperature and humidity on the incidence of pulmonary tuberculosis in Hainan, China, 2004-2018. Biomed Environ Sci, 2024; 37, 1080−5.
[59] Konopka K, Micek A, Ochenduszko S, et al. Combined neutrophil-to-lymphocyte and platelet-volume-to-platelet ratio (NLR and PVPR Score) represents a novel prognostic factor in advanced gastric cancer patients. J Clin Med, 2021; 10, 3902. doi:  10.3390/jcm10173902
[60] Huang K, Yang XJ, Hu CY, et al. Short-term effect of ambient temperature change on the risk of tuberculosis admissions: assessments of two exposure metrics. Environ Res, 2020; 189, 109900. doi:  10.1016/j.envres.2020.109900
[61] Chen F, Deng ZB, Deng Y, et al. Attributable risk of ambient PM10 on daily mortality and years of life lost in Chengdu, China. Sci Total Environ, 2017; 581-582, 426-33.
[62] Li ZQ, Liu Q, Zhan MY, et al. Meteorological factors contribute to the risk of pulmonary tuberculosis: a multicenter study in eastern China. Sci Total Environ, 2021; 793, 148621. doi:  10.1016/j.scitotenv.2021.148621
[63] Wang J, Li W, Huang WZ, et al. The associations of ambient fine particles with tuberculosis incidence and the modification effects of ambient temperature: a nationwide time-series study in China. J Hazard Mater, 2023; 460, 132448. doi:  10.1016/j.jhazmat.2023.132448
[64] Smith GS, Schoenbach VJ, Richardson DB, et al. Particulate air pollution and susceptibility to the development of pulmonary tuberculosis disease in North Carolina: an ecological study. Int J Environ Health Res, 2014; 24, 103−12. doi:  10.1080/09603123.2013.800959
[65] Wang XQ, Li YQ, Hu CY, et al. Short-term effect of ambient air pollutant change on the risk of tuberculosis outpatient visits: a time-series study in Fuyang, China. Environ Sci Pollut Res, 2022; 29, 30656−72. doi:  10.1007/s11356-021-17323-7
[66] Lai TC, Chiang CY, Wu CF, et al. Ambient air pollution and risk of tuberculosis: a cohort study. Occup Environ Med, 2016; 73, 56−61. doi:  10.1136/oemed-2015-102995
[67] Hwang SS, Kang S, Lee JY, et al. Impact of outdoor air pollution on the incidence of tuberculosis in the Seoul metropolitan area, South Korea. Korean J Intern Med, 2014; 29, 183−90. doi:  10.3904/kjim.2014.29.2.183
[68] Przybylski G, Nowakowska-Arendt A, Pilaczyńska-Cemel M, et al. 10-years comparative clinico-epidemiological analysis of smoking and alcohol consumption in TB patients (Myc. Tuberculosis) and with mycobacteriosis (Myc. Kansas). Przegl Lek, 2014; 71, 576−80.
[69] Yu LJ, Cheng JX, Cui XL, et al. Province-specific smoking-attributable cancer mortality in China 2013. Tob Induc Dis, 2020; 18, 49.
[70] Chen XY, Liu JG, Zhou J, et al. Urban particulate matter (PM) suppresses airway antibacterial defence. Respir Res, 2018; 19, 5. doi:  10.1186/s12931-017-0700-0
[71] Riedl MA. The effect of air pollution on asthma and allergy. Curr Allergy Asthma Rep, 2008; 8, 139−46. doi:  10.1007/s11882-008-0024-8
[72] Ni L, Chuang CC, Zuo L. Fine particulate matter in acute exacerbation of COPD. Front Physiol, 2015; 6, 294.
[73] Ghio AJ. Particle exposures and infections. Infection, 2014; 42, 459−67. doi:  10.1007/s15010-014-0592-6
[74] Gillespie P, Tajuba J, Lippmann M, et al. Particulate matter neurotoxicity in culture is size-dependent. NeuroToxicology, 2013; 36, 112−7. doi:  10.1016/j.neuro.2011.10.006
[75] Banerjee S, Farhana A, Ehtesham NZ, et al. Iron acquisition, assimilation and regulation in mycobacteria. Infect Genet Evol, 2011; 11, 825−38. doi:  10.1016/j.meegid.2011.02.016
[76] Rivas-Santiago CE, Sarkar S, Cantarella IV P, et al. Air pollution particulate matter alters antimycobacterial respiratory epithelium innate immunity. Infect Immun, 2015; 83, 2507−17. doi:  10.1128/IAI.03018-14
[77] Álvaro-Meca A, Diaz A, de Miguel Díez J, et al. Environmental factors related to pulmonary tuberculosis in HIV-infected patients in the combined antiretroviral therapy (cART) era. PLoS One, 2016; 11, e0165944. doi:  10.1371/journal.pone.0165944
[78] Torres M, Carranza C, Sarkar S, et al. Urban airborne particle exposure impairs human lung and blood Mycobacterium tuberculosis immunity. Thorax, 2019; 74, 675−83. doi:  10.1136/thoraxjnl-2018-212529
[79] Smith GS, van den Eeden SK, Garcia C, et al. Air pollution and pulmonary tuberculosis: a nested case–control study among members of a northern California health plan. Environ Health Perspect, 2016; 124, 761−8. doi:  10.1289/ehp.1408166
[80] Yang JD, Zhang MX, Chen YG, et al. A study on the relationship between air pollution and pulmonary tuberculosis based on the general additive model in Wulumuqi, China. Int J Infect Dis, 2020; 96, 42−7. doi:  10.1016/j.ijid.2020.03.032
[81] Clapp LJ, Jenkin ME. Analysis of the relationship between ambient levels of O3, NO2 and NO as a function of NO x in the UK. Atmos Environ, 2001; 35, 6391−405. doi:  10.1016/S1352-2310(01)00378-8
[82] Ge EJ, Fan M, Qiu H, et al. Ambient sulfur dioxide levels associated with reduced risk of initial outpatient visits for tuberculosis: a population based time series analysis. Environ Pollut, 2017; 228, 408−15. doi:  10.1016/j.envpol.2017.05.051
[83] Xu M, Liao JQ, Yin P, et al. Association of air pollution with the risk of initial outpatient visits for tuberculosis in Wuhan, China. Occup Environ Med, 2019; 76, 560−6. doi:  10.1136/oemed-2018-105532
[84] Huang K, Ding K, Yang XJ, et al. Association between short-term exposure to ambient air pollutants and the risk of tuberculosis outpatient visits: a time-series study in Hefei, China. Environ Res, 2020; 184, 109343. doi:  10.1016/j.envres.2020.109343
[85] Malwal SR, Sriram D, Yogeeswari P, et al. Design, synthesis, and evaluation of thiol-activated sources of sulfur dioxide (SO2) as antimycobacterial agents. J Med Chem, 2012; 55, 553−7. doi:  10.1021/jm201023g
[86] Meng ZQ, Liu YX, Wu DM. Effect of sulfur dioxide inhalation on cytokine levels in lungs and serum of mice. Inhal Toxicol, 2005; 17, 303−7. doi:  10.1080/08958370590922625
[87] Sasindran SJ, Torrelles JB. Mycobacterium tuberculosis infection and inflammation: what is beneficial for the host and for the bacterium?. Front Microbiol, 2011; 2, 2.
[88] Yu K, Mitchell C, Xing Y, et al. Toxicity of nitrogen oxides and related oxidants on mycobacteria: M. tuberculosis is resistant to peroxynitrite anion. Tuber Lung Dis, 1999; 79, 191−8. doi:  10.1054/tuld.1998.0203
[89] Zhang YJ, Liu MY, Wu SS, et al. Spatial distribution of tuberculosis and its association with meteorological factors in mainland China. BMC Infect Dis, 2019; 19, 379. doi:  10.1186/s12879-019-4008-1
[90] Abhimanyu, Coussens AK. The role of UV radiation and vitamin D in the seasonality and outcomes of infectious disease. Photochem Photobiol Sci, 2017; 16, 314−38. doi:  10.1039/c6pp00355a
[91] Mathema B, Andrews JR, Cohen T, et al. Drivers of tuberculosis transmission. J Infect Dis, 2017; 216, S644−53. doi:  10.1093/infdis/jix354
[92] Huang YX, Huang JY, Su XT, et al. Analysis of the economic burden of diagnosis and treatment on patients with tuberculosis in Bao'an district of Shenzhen City, China. PLoS One, 2020; 15, e0237865. doi:  10.1371/journal.pone.0237865
[93] Guo C, Du Y, Shen SQ, et al. Spatiotemporal analysis of tuberculosis incidence and its associated factors in mainland China. Epidemiol Infect, 2017; 145, 2510−9. doi:  10.1017/S0950268817001133
[94] Niu ZC, Qi YJ, Zhao PQ, et al. Short-term effects of ambient air pollution and meteorological factors on tuberculosis in semi-arid area, northwest China: a case study in Lanzhou. Environ Sci Pollut Res, 2021; 28, 69190−9. doi:  10.1007/s11356-021-15445-6
[95] Chen H, Meng X, Yu YF, et al. Greenness and its composition and configuration in association with allergic rhinitis in preschool children. Environ Res, 2024; 251, 118627. doi:  10.1016/j.envres.2024.118627
[96] Cai WJ, Zhang C, Zhang SH, et al. The 2021 China report of the Lancet Countdown on health and climate change: seizing the window of opportunity. Lancet Public Health, 2021; 6, e932−47. doi:  10.1016/S2468-2667(21)00209-7
[97] Zhu S, Wu Y, Wang Q, et al. Long-term exposure to ambient air pollution and greenness in relation to pulmonary tuberculosis in China: a nationwide modelling study. Environ Res, 2022; 214, 114100. doi:  10.1016/j.envres.2022.114100
[98] Laurent O, Benmarhnia T, Milesi C, et al. Relationships between greenness and low birth weight: investigating the interaction and mediation effects of air pollution. Environ Res, 2019; 175, 124−32. doi:  10.1016/j.envres.2019.05.002
[99] Wu WJ, Du ZC, Wang Y, et al. The complex role of air pollution on the association between greenness and respiratory mortality: insight from a large cohort, 2009-2020. Sci Total Environ, 2023; 899, 165588. doi:  10.1016/j.scitotenv.2023.165588
[100] Markevych I, Schoierer J, Hartig T, et al. Exploring pathways linking greenspace to health: theoretical and methodological guidance. Environ Res, 2017; 158, 301−17. doi:  10.1016/j.envres.2017.06.028
[101] Huang K, Hu CY, Yang XY, et al. Contributions of ambient temperature and relative humidity to the risk of tuberculosis admissions: a multicity study in Central China. Sci Total Environ, 2022; 838, 156272. doi:  10.1016/j.scitotenv.2022.156272
[102] Graudenz GS, Landgraf RG, Jancar S, et al. The role of allergic rhinitis in nasal responses to sudden temperature changes. J Allergy Clin Immunol, 2006; 118, 1126−32. doi:  10.1016/j.jaci.2006.07.005
[103] Balcells ME, García P, Tiznado C, et al. Association of vitamin D deficiency, season of the year, and latent tuberculosis infection among household contacts. PLoS One, 2017; 12, e0175400. doi:  10.1371/journal.pone.0175400
[104] Margalit I, Block C, Mor Z. Seasonality of tuberculosis in Israel, 2001-2011. Int J Tuberc Lung Dis, 2016; 20, 1588−93. doi:  10.5588/ijtld.16.0306
[105] Watkinson WP, Campen MJ, Lyon JY, et al. Impact of the hypothermic response in inhalation toxicology studies. Ann N Y Acad Sci, 1997; 813, 849−63. doi:  10.1111/j.1749-6632.1997.tb51790.x