[1] Benjamin EJ, Blaha MJ, Chiuve SE, et al. Heart disease and stroke statistics-2017 update: a report from the American heart association. Circulation, 2017; 135, e146−603.
[2] Dasu MR, Jialal I. Free fatty acids in the presence of high glucose amplify monocyte inflammation via Toll-like receptors. Am J Physiol Endocrinol Metab, 2011; 300, E145−54. doi:  10.1152/ajpendo.00490.2010
[3] Sabatine MS, Giugliano RP, Keech AC, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med, 2017; 376, 1713−22. doi:  10.1056/NEJMoa1615664
[4] Silverman MG, Ference BA, Im K, et al. Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: a systematic review and meta-analysis. JAMA, 2016; 316, 1289−97. doi:  10.1001/jama.2016.13985
[5] Nguyen MTA, Favelyukis S, Nguyen AK, et al. A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J Biol Chem, 2007; 282, 35279−92. doi:  10.1074/jbc.M706762200
[6] Lee JY, Sohn KH, Rhee SH, et al. Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. J Biol Chem, 2001; 276, 16683−9. doi:  10.1074/jbc.M011695200
[7] Håversen L, Danielsson KN, Fogelstrand L, et al. Induction of proinflammatory cytokines by long-chain saturated fatty acids in human macrophages. Atherosclerosis, 2009; 202, 382−93. doi:  10.1016/j.atherosclerosis.2008.05.033
[8] Nosaka N, Maki H, Suzuki Y, et al. Effects of margarine containing medium-chain triacylglycerols on body fat reduction in humans. J Atheroscler Thromb, 2003; 10, 290−8. doi:  10.5551/jat.10.290
[9] Zhang XS, Zhang Y, Liu YH, et al. Medium-chain triglycerides promote macrophage reverse cholesterol transport and improve atherosclerosis in ApoE-deficient mice fed a high-fat diet. Nutr Res, 2016; 36, 964−73. doi:  10.1016/j.nutres.2016.06.004
[10] Westerterp M, Murphy AJ, Wang M, et al. Deficiency of ATP-binding cassette transporters A1 and G1 in macrophages increases inflammation and accelerates atherosclerosis in mice. Circ Res, 2013; 112, 1456−65. doi:  10.1161/CIRCRESAHA.113.301086
[11] Tang CR, Houston BA, Storey C, et al. Both STAT3 activation and cholesterol efflux contribute to the anti-inflammatory effect of apoA-I/ABCA1 interaction in macrophages. J Lipid Res, 2016; 57, 848−57. doi:  10.1194/jlr.M065797
[12] Tang CR, Liu YH, Kessler PS, et al. The macrophage cholesterol exporter ABCA1 functions as an anti-inflammatory receptor. J Biol Chem, 2009; 284, 32336−43. doi:  10.1074/jbc.M109.047472
[13] Zhang XS, Xue CY, Xu Q, et al. Caprylic acid suppresses inflammation via TLR4/NF-κB signaling and improves atherosclerosis in ApoE-deficient mice. Nutr Metab, 2019; 16, 40. doi:  10.1186/s12986-019-0359-2
[14] Liu YH, Zhang Y, Xu Q, et al. Increased norepinephrine by medium-chain triglyceride attributable to lipolysis in white and brown adipose tissue of C57BL/6J mice. Biosci Biotechnol Biochem, 2012; 76, 1213−8. doi:  10.1271/bbb.120079
[15] Hirotani Y, Fukamachi J, Ueyama R, et al. Effects of capsaicin coadministered with eicosapentaenoic acid on obesity-related dysregulation in high-fat-fed mice. Biol Pharm Bull, 2017; 40, 1581−5. doi:  10.1248/bpb.b17-00247
[16] Oscarsson J, Hurt-Camejo E. Omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid and their mechanisms of action on apolipoprotein B-containing lipoproteins in humans: a review. Lipids Health Dis, 2017; 16, 149. doi:  10.1186/s12944-017-0541-3
[17] Vasandani C, Kafrouni AI, Caronna A, et al. Upregulation of hepatic LDL transport by n-3 fatty acids in LDL receptor knockout mice. J Lipid Res, 2002; 43, 772−84. doi:  10.1016/S0022-2275(20)30120-6
[18] Zhang Y, Xu Q, Liu YH, et al. Medium-chain triglyceride activated brown adipose tissue and induced reduction of fat mass in C57BL/6J mice fed high-fat diet. Biomed Environ Sci, 2015; 28, 97−104.
[19] Zhang Y, Yang XY, Zhang XS, et al. Effects of medium-chain fatty acids on high-density-lipoprotein in rats fed with high fat diet. J Hyg Res, 2018; 47, 123−7. (In Chinese
[20] Xu Q, Xue CY, Zhang Y, et al. Medium-chain fatty acids enhanced the excretion of fecal cholesterol and cholic acid in C57BL/6J mice fed a cholesterol-rich diet. Biosci Biotechnol Biochem, 2013; 77, 1390−6. doi:  10.1271/bbb.120999
[21] Abou-Saleh H, Ouhtit A, Halade GV, et al. Bone benefits of fish oil supplementation depend on its EPA and DHA content. Nutrients, 2019; 11, 2701. doi:  10.3390/nu11112701
[22] Daci A, Özen G, Uyar İ, et al. Omega-3 polyunsaturated fatty acids reduce vascular tone and inflammation in human saphenous vein. Prostaglandins Other Lipid Mediat, 2017; 133, 29−34. doi:  10.1016/j.prostaglandins.2017.08.007
[23] Papada E, Kaliora AC, Gioxari A, et al. Anti-inflammatory effect of elemental diets with different fat composition in experimental colitis. Br J Nutr, 2014; 111, 1213−20. doi:  10.1017/S0007114513003632
[24] Kono H, Fujii H, Asakawa M, et al. Medium-chain triglycerides enhance secretory IgA expression in rat intestine after administration of endotoxin. Am J Physiol Gastrointest Liver Physiol, 2004; 286, G1081−9. doi:  10.1152/ajpgi.00457.2003
[25] Babashamsi MM, Koukhaloo SZ, Halalkhor S, et al. ABCA1 and metabolic syndrome; a review of the ABCA1 role in HDL-VLDL production, insulin-glucose homeostasis, inflammation and obesity. Diabetes Metab Syndr, 2019; 13, 1529−34. doi:  10.1016/j.dsx.2019.03.004
[26] Basso F, Freeman L, Knapper CL, et al. Role of the hepatic ABCA1 transporter in modulating intrahepatic cholesterol and plasma HDL cholesterol concentrations. J Lipid Res, 2003; 44, 296−302. doi:  10.1194/jlr.M200414-JLR200
[27] Wellington CL, Brunham LR, Zhou S, et al. Alterations of plasma lipids in mice via adenoviral-mediated hepatic overexpression of human ABCA1. J Lipid Res, 2003; 44, 1470−80. doi:  10.1194/jlr.M300110-JLR200
[28] Liu YH, Tang CR. Regulation of ABCA1 functions by signaling pathways. Biochim Biophys Acta, 2012; 1821, 522−9. doi:  10.1016/j.bbalip.2011.08.015
[29] Demina EP, Miroshnikova VV, Maĭorov NV, et al. ABCA1 mRNA and protein levels in M-CSF-activated macrophages from patients with arterial stenosis. Tsitologiia, 2013; 55, 580−5.
[30] Zhang N, Han L, Xue YR, et al. The protective effect of magnesium lithospermate B on hepatic Ischemia/Reperfusion via inhibiting the Jak2/Stat3 signaling pathway. Front Pharmacol, 2019; 10, 620. doi:  10.3389/fphar.2019.00620
[31] Mason RP. New insights into mechanisms of action for Omega-3 fatty acids in atherothrombotic cardiovascular disease. Curr Atheroscler Rep, 2019; 21, 2. doi:  10.1007/s11883-019-0762-1
[32] Hao W, Wong OY, Liu XL, et al. ω-3 Fatty acids suppress inflammatory cytokine production by macrophages and hepatocytes. J Pediatr Surg, 2010; 45, 2412−8. doi:  10.1016/j.jpedsurg.2010.08.044
[33] Tanaka N, Irino Y, Shinohara M, et al. Eicosapentaenoic acid-enriched high-density lipoproteins exhibit anti-atherogenic properties. Circ J, 2018; 82, 596−601. doi:  10.1253/circj.CJ-17-0294
[34] Karasawa T, Takahashi M. Role of NLRP3 inflammasomes in atherosclerosis. J Atheroscler Thromb, 2017; 24, 443−51. doi:  10.5551/jat.RV17001
[35] Heo KN, Lin X, Han IK, et al. Medium-chain fatty acids but not L-carnitine accelerate the kinetics of [14C] triacylglycerol utilization by colostrum-deprived newborn pigs. J Nutr, 2002; 132, 1989−94. doi:  10.1093/jn/132.7.1989