[1] |
D Xie, G Jin, Y Zhou, et al. Ecological function zoning of Poyang Lake wetland: a RAMSAR site in China. Water Policy, 2013; 15, 922. doi: 10.2166/wp.2013.181 |
[2] |
Mu S, Li B, Yao J, et al. Monitoring the spatio-temporal dynamics of the wetland vegetation in Poyang Lake by Landsat and MODIS observations. Sci Total Environ, 2020; 725, 138096. doi: 10.1016/j.scitotenv.2020.138096 |
[3] |
Wei ZH, Li YK, Xu P, et al. Patterns of change in the population and spatial distribution of oriental white storks (Ciconia boyciana) wintering in Poyang Lake. Zool Res, 2016; 37, 338−46. |
[4] |
Wu Y, Ji W. Study on Jiangxi Poyang Lake national nature reserve. Forest, 2002. (In Chinese) |
[5] |
Wan Z, Kan Q, Zhao Z, et al. Characterization of subtype H6 avian influenza a viruses isolated from wild birds in Poyang Lake, China Front Vet Sci, 2021; 8, 685399. |
[6] |
Takekawa JY, Newman SH, Xiao X, et al. Migration of waterfowl in the East Asian flyway and spatial relationship to HPAI H5N1 outbreaks. Avian Dis, 2010; 54, 466−76. doi: 10.1637/8914-043009-Reg.1 |
[7] |
Wang Y, Jiang Z, Jin Z, et al. Risk factors for infectious diseases in backyard poultry farms in the Poyang Lake area, China. PLoS One, 2013; 8, e67366. doi: 10.1371/journal.pone.0067366 |
[8] |
Shen G, Fu W, Guo H, et al. Water body mapping using long time series sentinel-1 SAR data in Poyang Lake. Water, 2022; 14, 1902. doi: 10.3390/w14121902 |
[9] |
Li Q, Lai G, Devlin AT. A review on the driving forces of water decline and its impacts on the environment in Poyang Lake, China. J Water Clim Chang, 2020; 12, 1370−91. |
[10] |
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014; 30, 2114−20. doi: 10.1093/bioinformatics/btu170 |
[11] |
Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol, 2019; 20, 257. doi: 10.1186/s13059-019-1891-0 |
[12] |
Lu J, Breitwieser FP, Thielen P, et al. Bracken: estimating species abundance in metagenomics data. PeerJ Comput Sci, 2017; 3, e104. doi: 10.7717/peerj-cs.104 |
[13] |
Li D, Liu CM, Luo R, et al. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 2015; 31, 1674−6. doi: 10.1093/bioinformatics/btv033 |
[14] |
Hyatt D, Chen GL, LoCascio PF, et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics, 2010; 11, 119. doi: 10.1186/1471-2105-11-119 |
[15] |
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol, 2013; 30, 772−80. doi: 10.1093/molbev/mst010 |
[16] |
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016; 33, 1870−4. doi: 10.1093/molbev/msw054 |
[17] |
Letunic I, Bork P. Interactive Tree of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res, 2021; 49, W293−w6. doi: 10.1093/nar/gkab301 |
[18] |
Honkavuori KS, Shivaprasad HL, Briese T, et al. Novel picornavirus in Turkey poults with hepatitis, California, USA. Emerg Infect Dis, 2011; 17, 480−7. doi: 10.3201/eid1703.101410 |
[19] |
Wei CY, Su S, Huang Z, et al. Complete genome sequence of a novel duck hepatitis A virus discovered in southern China. J Virol, 2012; 86, 10247. doi: 10.1128/JVI.01643-12 |
[20] |
Pankovics P, Boros A, Reuter G. Novel picornavirus in domesticated common quail (Coturnix coturnix) in Hungary. Arch Virol, 2012; 157, 525−30. doi: 10.1007/s00705-011-1192-8 |
[21] |
Phan TG, Vo NP, Boros A, et al. The viruses of wild pigeon droppings. PLoS One, 2013; 8, e72787. doi: 10.1371/journal.pone.0072787 |
[22] |
Wu L, Ge G, Zhu G, et al. Diversity and composition of the bacterial community of Poyang Lake (China) as determined by 16S rRNA gene sequence analysis. World J Microbiol Biotechnol, 2012; 28, 233−44. doi: 10.1007/s11274-011-0812-5 |
[23] |
Smith KF, Oram DM. Corynebacteria (including diphtheria). In: M. Schaechter (Ed.), Encyclopedia of Microbiology (Third edition). Academic Press, Oxford, pp. 94−106. |
[24] |
Zhao G, Zhou L, Dong Y, et al. The gut microbiome of hooded cranes (Grus monacha) wintering at Shengjin Lake, China. Microbiologyopen, 2017; 6, e00447. doi: 10.1002/mbo3.447 |
[25] |
Peters BA, Shapiro JA, Church TR, et al. A taxonomic signature of obesity in a large study of American adults. Sci Rep, 2018; 8, 9749. doi: 10.1038/s41598-018-28126-1 |
[26] |
Pacwa M-Płociniczak, Biniecka P, Bondarczuk K, et al. Metagenomic functional profiling reveals differences in bacterial composition and function during bioaugmentation of aged petroleum-contaminated soil. Front Microbiol, 2020; 11, 2106. doi: 10.3389/fmicb.2020.02106 |
[27] |
Shenderov BA, Serkova GP. Nonfermenting gram-negative bacteria-flavobacteria. Zh Mikrobiol Epidemiol Immunobiol, 1984; 85−90. |
[28] |
Foley SL, Johnson TJ, Ricke SC, et al. Salmonella pathogenicity and host adaptation in chicken-associated serovars. Microbiol Mol Biol Rev, 2013; 77, 582−607. doi: 10.1128/MMBR.00015-13 |
[29] |
More S, Bøtner A, Butterworth A, et al. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): anthrax. EFSA J, 2017; 15, e04958. |
[30] |
De T Sousa, Hébraud M, MDapkevicius LE, et al. Genomic and metabolic characteristics of the pathogenicity in Pseudomonas aeruginosa. Int J Mol Sci, 2021; 22, 12892. doi: 10.3390/ijms222312892 |
[31] |
C-Lee R, Lee JH, Park M, et al. Biology of Acinetobacter baumannii: pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Front Cell Infect Microbiol, 2017; 7, 55. |
[32] |
Nogueira WG, BGois VA, KPinheiro DC, et al. Viral metagenomics reveals widely diverse viral community of Freshwater Amazonian Lake. Front Public Health, 2022; 10, 869886. doi: 10.3389/fpubh.2022.869886 |
[33] |
Sørensen PE, Van W Den Broeck, Kiil K, et al. New insights into the biodiversity of coliphages in the intestine of poultry. Sci Rep, 2020; 10, 15220. doi: 10.1038/s41598-020-72177-2 |
[34] |
Yinda CK, Esefeld J, Peter HU, et al. Penguin megrivirus, a novel picornavirus from an Adélie penguin (Pygoscelis adeliae). Arch Virol, 2019; 164, 2887−90. doi: 10.1007/s00705-019-04404-9 |
[35] |
Gerber PF, Shen H, Zheng Y, et al. Genomic sequence of a Megrivirus strain identified in Laying Hens in Brazil. Microbiol Resour Announc, 2019; 8. |
[36] |
KKwok TT, Mde MT Rooij, Messink AB, et al. Genome sequences of seven Megrivirus strains from Chickens in The Netherlands. Microbiol Resour Announc, 2020; 9. |
[37] |
Boros Á, Pankovics P, Mátics R, et al. Genome characterization of a novel megrivirus-related avian picornavirus from a carnivorous wild bird, western marsh harrier (Circus aeruginosus). Arch Virol, 2017; 162, 2781−9. doi: 10.1007/s00705-017-3403-4 |
[38] |
Vibin J, Chamings A, Klaassen M, et al. Metagenomic characterisation of avian parvoviruses and picornaviruses from Australian wild ducks. Sci Rep, 2020; 10, 12800. doi: 10.1038/s41598-020-69557-z |
[39] |
Zell R, Delwart E, Gorbalenya AE, et al. ICTV virus taxonomy profile: Picornaviridae. J Gen Virol, 2017; 98, 2421−2. doi: 10.1099/jgv.0.000911 |