[1] Solomon BD. The etiology of VACTERL association: current knowledge and hypotheses. Am J Med Genet C Semin Med Genet, 2018; 178, 440−6. doi:  10.1002/ajmg.c.31664
[2] Carli D, Garagnani L, Lando M, et al. VACTERL (vertebral defects, anal atresia, tracheoesophageal fistula with esophageal atresia, cardiac defects, renal and limb anomalies) association: disease spectrum in 25 patients ascertained for their upper limb involvement. J Pediatr, 2014; 164, 458-62. e2.
[3] Solomon BD. VACTERL/VATER association. Orphanet J Rare Dis, 2011; 6, 56. doi:  10.1186/1750-1172-6-56
[4] Amelot A, Cretolle C, de Saint Denis T, et al. Spinal dysraphism as a new entity in V. A. C. TE. R. L syndrome, resulting in a novel acronym V. A. C. TE. R. L. S. Eur J Pediatr, 2020; 179, 1121−9. doi:  10.1007/s00431-020-03609-4
[5] van de Putte R, van Rooij IALM, Marcelis CLM, et al. Spectrum of congenital anomalies among VACTERL cases: a EUROCAT population-based study. Pediatr Res, 2020; 87, 541−9. doi:  10.1038/s41390-019-0561-y
[6] McCauley J, Masand N, McGowan R, et al. X-linked VACTERL with hydrocephalus syndrome: further delineation of the phenotype caused by FANCB mutations. Am J Med Genet A, 2011; 155A, 2370−80.
[7] Solomon BD, Pineda-Alvarez DE, Raam MS, et al. Evidence for inheritance in patients with VACTERL association. Hum Genet, 2010; 127, 731−3. doi:  10.1007/s00439-010-0814-7
[8] Kechin A, Boyarskikh U, Kel A, et al. cutPrimers: a new tool for accurate cutting of primers from reads of targeted next generation sequencing. J Comput Biol, 2017; 24, 1138−43. doi:  10.1089/cmb.2017.0096
[9] Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009; 25, 1754−60. doi:  10.1093/bioinformatics/btp324
[10] Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools. Bioinformatics, 2009; 25, 2078−9. doi:  10.1093/bioinformatics/btp352
[11] DePristo MA, Banks E, Poplin R, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet, 2011; 43, 491−8. doi:  10.1038/ng.806
[12] Lubinsky M. The VACTERL association: mosaic mitotic aneuploidy as a cause and a model. J Assist Reprod Genet, 2019; 36, 1549−54. doi:  10.1007/s10815-019-01485-y
[13] Opitz JM. The developmental field concept in clinical genetics. J Pediatr, 1982; 101, 805−9. doi:  10.1016/S0022-3476(82)80337-5
[14] Buchta RM, Viseskul C, Sarto GE, et al. Familial bilateral renal agenesis and hereditary renal adysplasia. Z Kinderheilkd, 1973; 115, 111−29. doi:  10.1007/BF00440537
[15] McPherson E, Carey J, Kramer A, et al. Dominantly inherited renal adysplasia. Am J Med Genet, 1987; 26, 863−72. doi:  10.1002/ajmg.1320260413
[16] Murphy-Kaulbeck L, Dodds L, Joseph KS, et al. Single umbilical artery risk factors and pregnancy outcomes. Obstet Gynecol, 2010; 116, 843−50. doi:  10.1097/AOG.0b013e3181f0bc08
[17] Turnpenny PD, Ellard S. Alagille syndrome: pathogenesis, diagnosis and management. Eur J Hum Genet, 2012; 20: 251-7.
[18] Chen Y, Liu Z, Chen J, et al. The genetic landscape and clinical implications of vertebral anomalies in VACTERL association. J Med Genet, 2016; 53: 431-7.
[19] Brown AK, Roddam AW, Spitz L, et al. Oesophageal atresia, related malformations, and medical problems: a family study. Am J Med Genet, 1999; 85: 31-7.
[20] van Lennep M, Singendonk MM, Dall’Oglio L, et al. Oesophageal atresia. Nature Reviews disease primers, 2019; 5: 26.
[21] Winberg J, Gustavsson P, Papadogiannakis N, et al. Mutation screening and array comparative genomic hybridization using a 180K oligonucleotide array in VACTERL association. PLoS One, 2014; 9: e85313.
[22] Mikat B, Roll C, Schindler D, et al. X-linked recessive VACTERL-H due to a mutation in FANCB in a preterm boy. Clinical Dysmorphology, 2016; 25: 73-6.
[23] Herman TE, Siegel MJ. Vacterl-H syndrome. Journal of perinatology, 2002; 22: 496-8.
[24] Fiesco-Roa MO, Giri N, McReynolds LJ, et al. Genotype-phenotype associations in Fanconi anemia: a literature review. Blood reviews, 2019; 37, 100589. doi:  10.1016/j.blre.2019.100589
[25] Hilger AC, Halbritter J, Pennimpede T, et al. Targeted resequencing of 29 candidate genes and mouse expression studies implicate ZIC3 and FOXF1 in human VATER/VACTERL association. Hum Mutat, 2015; 36: 1150-4.
[26] Toriello HV, Higgins JV. X-linked midline defects. Am J Med Genet, 1985; 21: 143-6.
[27] Bowl MR, Nesbit MA, Harding B, et al. An interstitial deletion-insertion involving chromosomes 2p25. 3 and Xq27. 1, near SOX3, causes X-linked recessive hypoparathyroidism. J Clin Invest, 2005; 115: 2822-31.
[28] Tasic V, Mitrotti A, Riepe F, et al. Duplication of the gene in an sry-negative 46, XX male with associated congenital anomalies of kidneys and the urinary tract: Case report and review of the literature. Balkan Journal of Medical Genetics, 2019; 22: 81-8.
[29] Wei J, Liu C, Zhang M, et al. Duplication of SOX3 in an SRY-negative 46, XX male with prostatic utricle: case report and literature review. BMC Med Genomics, 2022; 15: 188.
[30] Chen CP, Shih JC, Chang JH, et al. Prenatal diagnosis of right pulmonary agenesis associated with VACTERL sequence. Prenatal Diagnosis: Published in Affiliation With the International Society for Prenatal Diagnosis, 2003; 23: 515-8.
[31] Amendola LM, Dorschner MO, Robertson PD, et al. Actionable exomic incidental findings in 6503 participants: challenges of variant classification. Genome Res, 2015; 25: 305-15.