[1] GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health, 2022; 7, e105-25.
[2] 2020 Alzheimer’s disease facts and figures. Alzheimers Dement, 2020; 16, 391−460.
[3] Liu CG, Meng S, Li Y, et al. MicroRNA-135a in ABCA1-labeled exosome is a serum biomarker candidate for Alzheimer’s disease. Biomed Environ Sci, 2021; 34, 19−28.
[4] Li WL, Li YY, Li YX, et al. Gene-environment interactions between environmental noise and ApoE4 causes AD-like neuropathology in the hippocampus in male rats. Biomed Environ Sci, 2022; 35, 270−5.
[5] Chen ZC, Zhong CJ. Oxidative stress in Alzheimer’s disease. Neurosci Bull, 2014; 30, 271−81. doi:  10.1007/s12264-013-1423-y
[6] Ali T, Kim T, Rehman SU, et al. Natural dietary supplementation of anthocyanins via PI3K/Akt/Nrf2/HO-1 pathways mitigate oxidative stress, neurodegeneration, and memory impairment in a mouse model of Alzheimer’s disease. Mol Neurobiol, 2018; 55, 6076−93. doi:  10.1007/s12035-017-0798-6
[7] Fão L, Mota SI, Rego AC. Shaping the Nrf2-ARE-related pathways in Alzheimer’s and Parkinson’s diseases. Ageing Res Rev, 2019; 54, 100942. doi:  10.1016/j.arr.2019.100942
[8] Zhou YY, Xie N, Li LB, et al. Puerarin alleviates cognitive impairment and oxidative stress in APP/PS1 transgenic mice. Int J Neuropsychopharmacol, 2014; 17, 635−44. doi:  10.1017/S146114571300148X
[9] Kanninen K, Heikkinen R, Malm T, et al. Intrahippocampal injection of a lentiviral vector expressing Nrf2 improves spatial learning in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA, 2009; 106, 16505−10. doi:  10.1073/pnas.0908397106
[10] Frias DP, Gomes RLN, Yoshizaki K, et al. Nrf2 positively regulates autophagy antioxidant response in human bronchial epithelial cells exposed to diesel exhaust particles. Sci Rep, 2020; 10, 3704. doi:  10.1038/s41598-020-59930-3
[11] Jo C, Gundemir S, Pritchard S, et al. Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. Nat Commun, 2014; 5, 3496. doi:  10.1038/ncomms4496
[12] Pajares M, Rojo AI, Arias E, et al. Transcription factor NFE2L2/NRF2 modulates chaperone-mediated autophagy through the regulation of LAMP2A. Autophagy, 2018; 14, 1310−22. doi:  10.1080/15548627.2018.1474992
[13] Abelaira HM, Réus GZ, Neotti MV, et al. The role of mTOR in depression and antidepressant responses. Life Sci, 2014; 101, 10−4. doi:  10.1016/j.lfs.2014.02.014
[14] Fan XD, Wang J, Hou JC, et al. Berberine alleviates ox-LDL induced inflammatory factors by up-regulation of autophagy via AMPK/mTOR signaling pathway. J Transl Med, 2015; 13, 92. doi:  10.1186/s12967-015-0450-z
[15] Liu SX, Sun YQ, Li ZM. Resveratrol protects Leydig cells from nicotine-induced oxidative damage through enhanced autophagy. Clin Exp Pharmacol Physiol, 2018; 45, 573−80. doi:  10.1111/1440-1681.12895
[16] Li GH, Lin XL, Zhang H, et al. Ox-Lp(a) transiently induces HUVEC autophagy via an ROS-dependent PAPR-1-LKB1-AMPK-mTOR pathway. Atherosclerosis, 2015; 243, 223−35. doi:  10.1016/j.atherosclerosis.2015.09.020
[17] Ou ZR, Kong XJ, Sun XD, et al. Metformin treatment prevents amyloid plaque deposition and memory impairment in APP/PS1 mice. Brain Behav Immun, 2018; 69, 351−63. doi:  10.1016/j.bbi.2017.12.009
[18] Hijioka M, Inden M, Yanagisawa D, et al. DJ-1/PARK7: a new therapeutic target for neurodegenerative disorders. Biol Pharm Bull, 2017; 40, 548−52. doi:  10.1248/bpb.b16-01006
[19] Jang J, Jeong S, Lee SI, et al. Oxidized DJ-1 levels in urine samples as a putative biomarker for Parkinson’s disease. Parkinsons Dis, 2018; 2018, 1241757.
[20] Yan YF, Yang WJ, Xu Q, et al. DJ-1 upregulates anti-oxidant enzymes and attenuates hypoxia/re-oxygenation-induced oxidative stress by activation of the nuclear factor erythroid 2-like 2 signaling pathway. Mol Med Rep, 2015; 12, 4734−42. doi:  10.3892/mmr.2015.3947
[21] Clements CM, McNally RS, Conti BJ, et al. DJ-1, a cancer- and Parkinson’s disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc Natl Acad Sci USA, 2006; 103, 15091−6. doi:  10.1073/pnas.0607260103
[22] Kitamura Y, Inden M, Kimoto Y, et al. Effects of a DJ-1-binding compound on spatial learning and memory impairment in a mouse model of Alzheimer’s disease. J Alzheimers Dis, 2017; 55, 67−72.
[23] Hardy J. The discovery of Alzheimer-causing mutations in the APP gene and the formulation of the “amyloid cascade hypothesis”. FEBS J, 2017; 284, 1040−4. doi:  10.1111/febs.14004
[24] Zhang W, Bai M, Xi Y, et al. Early memory deficits precede plaque deposition in APPswe/PS1dE9 mice: involvement of oxidative stress and cholinergic dysfunction. Free Radic Biol Med, 2012; 52, 1443−52. doi:  10.1016/j.freeradbiomed.2012.01.023
[25] Ruan LF, Kang ZJ, Pei G, et al. Amyloid deposition and inflammation in APPswe/PS1dE9 mouse model of Alzheimers disease. Curr Alzheimer Res, 2009; 6, 531−40. doi:  10.2174/156720509790147070
[26] Santiago-Ortiz JL, Schaffer DV. Adeno-associated virus (AAV) vectors in cancer gene therapy. J Control Release, 2016; 240, 287−301. doi:  10.1016/j.jconrel.2016.01.001
[27] Cearley CN, Wolfe JH. Transduction characteristics of adeno-associated virus vectors expressing cap serotypes 7, 8, 9, and Rh10 in the mouse brain. Mol Ther, 2006; 13, 528−37. doi:  10.1016/j.ymthe.2005.11.015
[28] Fan YG, Guo T, Han XR, et al. Paricalcitol accelerates BACE1 lysosomal degradation and inhibits calpain-1 dependent neuronal loss in APP/PS1 transgenic mice. eBioMedicine, 2019; 45, 393−407. doi:  10.1016/j.ebiom.2019.07.014
[29] Aleissa MS, Alkahtani S, Eldaim MAA, et al. Fucoidan Ameliorates oxidative stress, inflammation, DNA damage, and hepatorenal injuries in diabetic rats intoxicated with Aflatoxin B. Oxid Med Cell Longev, 2020; 2020, 9316751.
[30] Bi WY, Cai SL, Hang ZC, et al. Transplantation of feces from mice with Alzheimer’s disease promoted lung cancer growth. Biochem Biophys Res Commun, 2022; 600, 67−74. doi:  10.1016/j.bbrc.2022.01.078
[31] Torromino G, Maggi A, De Leonibus E. Estrogen-dependent hippocampal wiring as a risk factor for age-related dementia in women. Prog Neurobiol, 2021; 197, 101895. doi:  10.1016/j.pneurobio.2020.101895
[32] Nunomura A, Zhu XW, Perry G. Modulation of Parkinson’s disease associated protein rescues Alzheimer’s disease degeneration. J Alzheimers Dis, 2017; 55, 73−5.
[33] Prasad KN. Oxidative stress and pro-inflammatory cytokines may act as one of the signals for regulating microRNAs expression in Alzheimer’s disease. Mech Ageing Dev, 2017; 162, 63−71. doi:  10.1016/j.mad.2016.12.003
[34] Guo JP, Cheng J, North BJ, et al. Functional analyses of major cancer-related signaling pathways in Alzheimer’s disease etiology. Biochim Biophys Acta Rev Cancer, 2017; 1868, 341−58. doi:  10.1016/j.bbcan.2017.07.001
[35] Schellenberg GD, Montine TJ. The genetics and neuropathology of Alzheimer’s disease. Acta Neuropathol, 2012; 124, 305−23. doi:  10.1007/s00401-012-0996-2
[36] Reitz C, Mayeux R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol, 2014; 88, 640−51. doi:  10.1016/j.bcp.2013.12.024
[37] Ahmad A, Manjrekar P, Yadav C, et al. Evaluation of ischemia-modified albumin, malondialdehyde, and advanced oxidative protein products as markers of vascular injury in diabetic nephropathy. Biomark Insights, 2016; 11, 63−8.
[38] Bao LP, Li JS, Zha DQ, et al. Chlorogenic acid prevents diabetic nephropathy by inhibiting oxidative stress and inflammation through modulation of the Nrf2/HO-1 and NF-ĸB pathways. Int Immunopharmacol, 2018; 54, 245−53. doi:  10.1016/j.intimp.2017.11.021
[39] Hou YN, Peng SJ, Li XM, et al. Honokiol alleviates oxidative stress-induced neurotoxicity via activation of Nrf2. ACS Chem Neurosci, 2018; 9, 3108−16. doi:  10.1021/acschemneuro.8b00290
[40] Kim J, Kundu M, Viollet B, et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol, 2011; 13, 132−41. doi:  10.1038/ncb2152
[41] Wang WP, Zhao H, Chen BH. DJ-1 protects retinal pericytes against high glucose-induced oxidative stress through the Nrf2 signaling pathway. Sci Rep, 2020; 10, 2477. doi:  10.1038/s41598-020-59408-2
[42] Han T, Liu MH, Yang SB. DJ-1 alleviates angiotensin II-induced endothelial progenitor cell damage by activating the PPARγ/HO-1 pathway. J Cell Biochem, 2018; 119, 392−400. doi:  10.1002/jcb.26191
[43] Loboda A, Damulewicz M, Pyza E, et al. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci, 2016; 73, 3221−47. doi:  10.1007/s00018-016-2223-0
[44] Klionsky DJ, Petroni G, Amaravadi RK, et al. Autophagy in major human diseases. EMBO J, 2021; 40, e108863.
[45] Wirawan E, Walle LV, Kersse K, et al. Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death Dis, 2010; 1, e18. doi:  10.1038/cddis.2009.16
[46] Ouyang CH, You JY, Xie ZL. The interplay between autophagy and apoptosis in the diabetic heart. J Mol Cell Cardiol, 2014; 71, 71−80. doi:  10.1016/j.yjmcc.2013.10.014
[47] Li MY, Zhu XL, Zhao BX, et al. Adrenomedullin alleviates the pyroptosis of Leydig cells by promoting autophagy via the ROS-AMPK-mTOR axis. Cell Death Dis, 2019; 10, 489. doi:  10.1038/s41419-019-1728-5
[48] Zhang M, Teng CH, Wu FF, et al. Edaravone attenuates traumatic brain injury through anti-inflammatory and anti-oxidative modulation. Exp Ther Med, 2019; 18, 467−74.
[49] Pajares M, Jiménez-Moreno N, García-Yagüe ÁJ, et al. Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes. Autophagy, 2016; 12, 1902−16. doi:  10.1080/15548627.2016.1208889
[50] Kaushal GP, Chandrashekar K, Juncos LA. Molecular interactions between reactive oxygen species and autophagy in kidney disease. Int J Mol Sci, 2019; 20, 3791. doi:  10.3390/ijms20153791
[51] Jain A, Lamark T, Sjøttem E, et al. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem, 2010; 285, 22576−91. doi:  10.1074/jbc.M110.118976
[52] Fan SN, Zhang B, Luan P, et al. PI3K/AKT/mTOR/p70S6K pathway is involved in Aβ25-35-induced autophagy. BioMed Res Int, 2015; 2015, 161020.
[53] González-Rodríguez Á, Mayoral R, Agra N, et al. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis, 2014; 5, e1179. doi:  10.1038/cddis.2014.162
[54] Petrović A, Bogojević D, Korać A, et al. Oxidative stress-dependent contribution of HMGB1 to the interplay between apoptosis and autophagy in diabetic rat liver. J Physiol Biochem, 2017; 73, 511−21. doi:  10.1007/s13105-017-0574-0
[55] Xiong YJ, Deng ZB, Liu JN, et al. Enhancement of epithelial cell autophagy induced by sinensetin alleviates epithelial barrier dysfunction in colitis. Pharmacol Res, 2019; 148, 104461. doi:  10.1016/j.phrs.2019.104461
[56] Pang J, Li FZ, Feng X, et al. Influences of different dietary energy level on sheep testicular development associated with AMPK/ULK1/autophagy pathway. Theriogenology, 2018; 108, 362−70. doi:  10.1016/j.theriogenology.2017.12.017
[57] Arab HH, Al-Shorbagy MY, Saad MA. Activation of autophagy and suppression of apoptosis by dapagliflozin attenuates experimental inflammatory bowel disease in rats: Targeting AMPK/mTOR, HMGB1/RAGE and Nrf2/HO-1 pathways. Chem Biol Interact, 2021; 335, 109368. doi:  10.1016/j.cbi.2021.109368
[58] Deng J, Zeng LS, Lai XY, et al. Metformin protects against intestinal barrier dysfunction via AMPKα1-dependent inhibition of JNK signalling activation. J Cell Mol Med, 2018; 22, 546−57. doi:  10.1111/jcmm.13342
[59] Hu QY, Knight PH, Ren YH, et al. The emerging role of stimulator of interferons genes signaling in sepsis: Inflammation, autophagy, and cell death. Acta Physiol, 2019; 225, e13194.
[60] Shen BY, Feng HH, Cheng JQ, et al. Geniposide alleviates non-alcohol fatty liver disease via regulating Nrf2/AMPK/mTOR signalling pathways. J Cell Mol Med, 2020; 24, 5097−108. doi:  10.1111/jcmm.15139