[1] |
Vue D, Tang QY. Zika virus overview: transmission, origin, pathogenesis, animal model and diagnosis. Zoonoses (Burlingt), 2021; 1. |
[2] |
Zhou KH, Li CQ, Shi W, et al. Current progress in the development of Zika virus vaccines. Vaccines (Basel), 2021; 9, 1004. doi: 10.3390/vaccines9091004 |
[3] |
Reynolds CJ, Suleyman OM, Ortega-Prieto AM, et al. T cell immunity to Zika virus targets immunodominant epitopes that show cross-reactivity with other Flaviviruses. Sci Rep, 2018; 8, 672. doi: 10.1038/s41598-017-18781-1 |
[4] |
Priyamvada L, Quicke KM, Hudson WH, et al. Human antibody responses after dengue virus infection are highly cross-reactive to Zika virus. Proc Natl Acad Sci USA, 2016; 113, 7852−7. doi: 10.1073/pnas.1607931113 |
[5] |
Endale A, Medhin G, Darfiro K, et al. Magnitude of antibody cross-reactivity in medically important mosquito-borne flaviviruses: a systematic review. Infect Drug Resist, 2021; 14, 4291−9. doi: 10.2147/IDR.S336351 |
[6] |
Balz K, Trassl L, Härtel V, et al. Virus-induced T cell-mediated heterologous immunity and vaccine development. Front Immunol, 2020; 11, 513. doi: 10.3389/fimmu.2020.00513 |
[7] |
Rivino L, Lim MQ. CD4+ and CD8+ T-cell immunity to Dengue–lessons for the study of Zika virus. Immunology, 2017; 150, 146−54. doi: 10.1111/imm.12681 |
[8] |
Mapalagamage M, Weiskopf D, Sette A, et al. Current understanding of the role of T cells in chikungunya, dengue and Zika infections. Viruses, 2022; 14, 242. doi: 10.3390/v14020242 |
[9] |
Terzian ACB, Schanoski AS, de Oliveira Mota MT, et al. Viral load and cytokine response profile does not support antibody-dependent enhancement in dengue-primed Zika virus–infected patients. Clin Infect Dis, 2017; 65, 1260−5. doi: 10.1093/cid/cix558 |
[10] |
de Góes Cavalcanti LP, Tauil PL, Alencar CH, et al. Zika virus infection, associated microcephaly, and low yellow fever vaccination coverage in Brazil: is there any causal link? J Infect Dev Ctries, 2016; 10, 563−6. doi: 10.3855/jidc.8575 |