[1] Vanmechelen B, Logist AS, Wawina-Bokalanga T, et al. Identification of the First SARS-CoV-2 Lineage B.1.1.529 Virus Detected in Europe. Microbiol Resour Announc, 2022; 11, e0116121. doi:  10.1128/mra.01161-21
[2] European Centre for Disease Prevention and Control. Threat Assessment Brief: Implications of the emergence and spread of the SARS-CoV-2 B.1.1.529 variant of concern (Omicron) for the EU/EEA. https://www.ecdc.europa.eu/en/publications-data/threat-assessment-brief-emergence-sars-cov-2-variant-b.1.1.529. [2021-11-26].
[3] Torjesen I. Covid-19: Omicron may be more transmissible than other variants and partly resistant to existing vaccines, scientists fear. BMJ, 2021; 375, n2943.
[4] Islam R, Hossain J. Detection of SARS-CoV-2 Omicron (B. 1.1. 529) variant has created panic among the people across the world:What should we do right now? J Med Virol, 2022; 94, 1768−9.
[5] Centers for Disease Control and Prevention. New SARS-CoV-2 variant of concern identified: Omicron (B.1.1.529) variant. https://emergency.cdc.gov/han/2021/han00459.asp. [2021-12-1].
[6] CDC COVID-19 Response Team. SARS-CoV-2 B.1.1.529 (omicron) variant — United States, December 1-8, 2021. MMWR Morb Mortal Wkly Rep, 2021; 70, 1731−4. doi:  10.15585/mmwr.mm7050e1
[7] Kim DS, Rowland-Jones S, Gea-Mallorquí E. Will SARS-CoV-2 infection elicit long-lasting protective or sterilising immunity? Implications for vaccine strategies (2020). Front Immunol, 2020; 11, 571481. doi:  10.3389/fimmu.2020.571481
[8] Zheng H, Cao YL, Chen XS, et al. Disease profile and plasma neutralizing activity of post-vaccination Omicron BA.1 infection in Tianjin, China: a retrospective study. Cell Res, 2022; 32, 781−4. doi:  10.1038/s41422-022-00674-2
[9] Reynolds CJ, Pade C, Gibbons JM, et al. Immune boosting by B.1.1.529 (Omicron) depends on previous SARS-CoV-2 exposure. Science, 2022; 377, eabq1841. doi:  10.1126/science.abq1841
[10] Quandt J, Muik A, Salisch N, et al. Omicron BA.1 breakthrough infection drives cross-variant neutralization and memory B cell formation against conserved epitopes. Sci Immunol, 2022; 7, eabq2427. doi:  10.1126/sciimmunol.abq2427
[11] Park YJ, Pinto D, Walls AC, et al. Imprinted antibody responses against SARS-CoV-2 Omicron sublineages. Science, 2022; 378, 619−27. doi:  10.1126/science.adc9127
[12] Cao YL, Yisimayi A, Jian FC, et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature, 2022; 608, 593−602. doi:  10.1038/s41586-022-04980-y
[13] Bobrovitz N, Ware H, Ma XM, et al. Protective effectiveness of previous SARS-CoV-2 infection and hybrid immunity against the Omicron variant and severe disease: a systematic review and meta-regression. Lancet Infect Dis, 2023; 23, 556−67.
[14] Huo JD, Dijokaite-Guraliuc A, Nutalai R, et al. Humoral responses against SARS-CoV-2 Omicron BA.2.11, BA.2.12.1 and BA.2.13 from vaccine and BA.1 serum. Cell Discov, 2022; 8, 119.
[15] Bates TA, McBride SK, Leier HC, et al. Vaccination before or after SARS-CoV-2 infection leads to robust humoral response and antibodies that effectively neutralize variants. Sci Immunol, 2022; 7, eabn8014. doi:  10.1126/sciimmunol.abn8014
[16] Piccoli L, Park YJ, Tortorici MA, et al. Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology. Cell, 2020; 183, 1024−42.e21. doi:  10.1016/j.cell.2020.09.037
[17] Robbiani DF, Gaebler C, Muecksch F, et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature, 2020; 584, 437−42. doi:  10.1038/s41586-020-2456-9
[18] Servellita V, Syed AM, Morris MK, et al. Neutralizing immunity in vaccine breakthrough infections from the SARS-CoV-2 Omicron and Delta variants. Cell, 2022; 185, 1539−48. doi:  10.1016/j.cell.2022.03.019
[19] Sariol A, Perlman S. Lessons for COVID-19 immunity from other coronavirus infections. Immunity, 2020; 53, 248−63. doi:  10.1016/j.immuni.2020.07.005
[20] Grifoni A, Weiskopf D, Ramirez SI, et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell, 2020; 181, 1489−501. doi:  10.1016/j.cell.2020.05.015
[21] Rydyznski Moderbacher C, Ramirez SI, Dan JM, et al. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell, 2020; 183, 996−1012.e19. doi:  10.1016/j.cell.2020.09.038
[22] Jiang M, Guo Y, Luo Q, et al. T-cell subset counts in peripheral blood can be used as discriminatory biomarkers for diagnosis and severity prediction of coronavirus disease 2019. J Infect Dis, 2020; 222, 198−202. doi:  10.1093/infdis/jiaa252
[23] Gao ML, Liu YL, Guo MQ, et al. Regulatory CD4+ and CD8+ T cells are negatively correlated with CD4+/CD8+ T cell ratios in patients acutely infected with SARS-CoV-2. J Leukoc Biol, 2021; 109, 91−7. doi:  10.1002/JLB.5COVA0720-421RR
[24] Liu ZM, Long W, Tu MQ, et al. Lymphocyte subset (CD4+, CD8+) counts reflect the severity of infection and predict the clinical outcomes in patients with COVID-19. J Infect, 2020; 81, 318−56.
[25] Wong RSM, Wu AL, To KF, et al. Haematological manifestations in patients with severe acute respiratory syndrome: retrospective analysis. BMJ, 2003; 326, 1358−62. doi:  10.1136/bmj.326.7403.1358
[26] Wang F, Nie JY, Wang HZ, et al. Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia. J Infect Dis, 2020; 221, 1762−9. doi:  10.1093/infdis/jiaa150