| [1] | WHO. Antimicrobial resistance. 2023. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance. [2023-11-21] |
| [2] | Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet, 2022; 399, 629−55. doi: 10.1016/S0140-6736(21)02724-0 |
| [3] | Temkin E, Fallach N, Almagor J, et al. Estimating the number of infections caused by antibiotic-resistant Escherichia coli and Klebsiella pneumoniae in 2014: a modelling study. Lancet Glob Health, 2018; 6, e969−79. doi: 10.1016/S2214-109X(18)30278-X |
| [4] | Cimen C, Berends MS, Bathoorn E, et al. Vancomycin-resistant enterococci (VRE) in hospital settings across European borders: a scoping review comparing the epidemiology in the Netherlands and Germany. Antimicrob Resist Infect Control, 2023; 12, 78. doi: 10.1186/s13756-023-01278-0 |
| [5] | Tamma PD, Aitken SL, Bonomo RA, et al. Infectious diseases society of America 2023 guidance on the treatment of antimicrobial resistant gram-negative infections. Clin Infect Dis, 2023; 18, ciad428. |
| [6] | Wang Q, Chen MY, Ou Q, et al. Carbapenem-resistant hypermucoviscous Klebsiella pneumoniae clinical isolates from a tertiary hospital in China: antimicrobial susceptibility, resistance phenotype, epidemiological characteristics, microbial virulence, and risk factors. Front Cell Infect Microbiol, 2022; 12, 1083009. doi: 10.3389/fcimb.2022.1083009 |
| [7] | Huang L, Zhang R, Hu YY, et al. Epidemiology and risk factors of methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci infections in Zhejiang China from 2015 to 2017. Antimicrob Resist Infect Control, 2019; 8, 90. doi: 10.1186/s13756-019-0539-x |
| [8] | Zhou WQ, Zhou H, Sun YH, et al. Characterization of clinical enterococci isolates, focusing on the vancomycin-resistant enterococci in a tertiary hospital in China: based on the data from 2013 to 2018. BMC Infect Dis, 2020; 20, 356. doi: 10.1186/s12879-020-05078-4 |
| [9] | CDC. Antibiotic resistance threats in the United States, 2019. Atlanta, GA: U. S. Department of Health and Human Services, CDC. 2019. |
| [10] | Todorić Z, Majdandžić I, Keretić Kregar T, et al. Increasing trend in enterococcal bacteraemia and vancomycin resistance in a tertiary care hospital in Croatia, 2017-2021. Infect Dis, 2023; 55, 9−16. doi: 10.1080/23744235.2022.2131901 |
| [11] | European Centre for Disease Prevention and Control. Antimicrobial resistance in the EU/EEA (EARS-Net) - Annual epidemiological report 2021. Stockholm: European Centre for Disease Prevention and Control. 2022. ( |
| [12] | Roberts SC, Zembower TR. Global increases in antibiotic consumption: a concerning trend for WHO targets. Lancet Infect Dis, 2021; 21, 10−1. doi: 10.1016/S1473-3099(20)30456-4 |
| [13] | Aslam B, Wang W, Arshad MI, et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist, 2018; 11, 1645−58. doi: 10.2147/IDR.S173867 |
| [14] | Abejew AA, Wubetu GY, Fenta TG. Relationship between antibiotic consumption and resistance: a systematic review. Can J Infect Dis Med Microbiol, 2024; 2024, 9958678. |
| [15] | Gong W, Tang W, Luo L, et al. Trends and correlation between antimicrobial resistance and antibiotics consumption in a specialist children's hospital from 2016 to 2021. Infect Drug Resist, 2022; 15, 5679−89. doi: 10.2147/IDR.S381604 |
| [16] | Pérez-Lazo G, Abarca-Salazar S, Lovón R, et al. Antibiotic consumption and its relationship with bacterial resistance profiles in ESKAPE pathogens in a Peruvian hospital. Antibiotics (Basel), 2021; 10, 1221. doi: 10.3390/antibiotics10101221 |
| [17] | Boutzoukas AE, Komarow L, Chen L, et al. International epidemiology of carbapenemase-producing Escherichia coli. Clin Infect Dis, 2023; 77, 499−509. doi: 10.1093/cid/ciad288 |
| [18] | Requirements for the quality and capacity of hospital microbiological laboratories in the network of national bacterial drug resistance monitoring network. http://www.carss.cn/Download/Details/656. [2020-01-03]. (In Chinese) |
| [19] | National surveillance report on bacterial resistance in 2022. https://www.carss.cn/Report/Details?aId=917. [2023-11-20]. (In Chinese) |
| [20] | Standard specification for data format of national bacterial resistance monitoring network. http://www.carss.cn/Download/Details/812. [2021-12-28] |
| [21] | Technical scheme of national bacterial resistance monitoring network (version 2020). http://www.carss.cn/Download/Details/657. [2020-01-03]. (in Chinese) |
| [22] | Chen X, Yu Y, Tang G. Pharamacology. Beijing: People's Medical Publishing House. 2011. |
| [23] | National Bureau of Statistics. China statistical yearbook 2023. China Statistics Press. 2023. (In Chinese) |
| [24] | Aliabadi S, Anyanwu P, Beech E, et al. Effect of antibiotic stewardship interventions in primary care on antimicrobial resistance of Escherichia coli bacteraemia in England (2013-18): a quasi-experimental, ecological, data linkage study. Lancet Infect Dis, 2021; 21, 1689−700. doi: 10.1016/S1473-3099(21)00069-4 |
| [25] | López-Lozano JM, Lawes T, Nebot C, et al. A nonlinear time-series analysis approach to identify thresholds in associations between population antibiotic use and rates of resistance. Nat Microbiol, 2019; 4, 1160−72. doi: 10.1038/s41564-019-0410-0 |
| [26] | Maugeri A, Barchitta M, Magnano San Lio R, et al. Socioeconomic and governance factors disentangle the relationship between temperature and antimicrobial resistance: a 10-year ecological analysis of European countries. Antibiotics (Basel), 2023; 12, 777. doi: 10.3390/antibiotics12040777 |
| [27] | Zhang D, Hu SS, Sun JY, et al. Antibiotic consumption versus the prevalence of carbapenem-resistant Gram-negative bacteria at a tertiary hospital in China from 2011 to 2017. J Infect Public Health, 2019; 12, 195−9. doi: 10.1016/j.jiph.2018.10.003 |
| [28] | Terahara F, Nishiura H. Carbapenem-resistant Pseudomonas aeruginosa and carbapenem use in Japan: an ecological study. J Int Med Res, 2019; 47, 4711−22. doi: 10.1177/0300060519864181 |
| [29] | Botelho J, Grosso F, Peixe L. Antibiotic resistance in Pseudomonas aeruginosa - Mechanisms, epidemiology and evolution. Drug Resist Updat, 2019; 44, 100640. doi: 10.1016/j.drup.2019.07.002 |
| [30] | Jung H, Pitout JDD, Matsumura Y, et al. Genomic epidemiology and molecular characteristics of blaNDM-1-positive carbapenem-resistant Pseudomonas aeruginosa belonging to international high-risk clone ST773 in the Gauteng region, South Africa. Eur J Clin Microbiol Infect Dis, 2024; 43, 627−40. doi: 10.1007/s10096-024-04763-5 |
| [31] | Liu S, Li Y, He ZQ, et al. A molecular study regarding the spread of vanA vancomycin-resistant Enterococcus faecium in a tertiary hospital in China. J Glob Antimicrob Resist, 2022; 31, 270−8. doi: 10.1016/j.jgar.2022.10.010 |
| [32] | Yan MY, He YH, Ruan GJ, et al. The prevalence and molecular epidemiology of vancomycin-resistant Enterococcus (VRE) carriage in patients admitted to intensive care units in Beijing, China. J Microbiol Immunol Infect, 2023; 56, 351−7. doi: 10.1016/j.jmii.2022.07.001 |
| [33] | Zhao YC, Sun ZH, Li JK, et al. Exploring the causes of the prevalence of vancomycin-resistant Enterococcus faecalis. Environ Sci Eur, 2024; 36, 92. doi: 10.1186/s12302-024-00923-8 |
| [34] | Ayobami O, Willrich N, Reuss A, et al. The ongoing challenge of vancomycin-resistant Enterococcus faecium and Enterococcus faecalis in Europe: an epidemiological analysis of bloodstream infections. Emerg Microbes Infect, 2020; 9, 1180−93. doi: 10.1080/22221751.2020.1769500 |