[1] |
Rice MB, Ljungman PL, Wilker EH, et al. Long-term exposure to traffic emissions and fine particulate matter and lung function decline in the Framingham heart study. Am J Respir Crit Care Med, 2015; 191, 656−64. doi: 10.1164/rccm.201410-1875OC |
[2] |
Zeng X, Xu XJ, Zheng XB, et al. Heavy metals in PM2.5 and in blood, and children's respiratory symptoms and asthma from an e-waste recycling area. Environ Pollut, 2016; 210, 346−53. doi: 10.1016/j.envpol.2016.01.025 |
[3] |
Pun VC, Kazemiparkouhi F, Manjourides J, et al. Long-Term PM2.5 Exposure and Respiratory, Cancer, and Cardiovascular Mortality in Older US Adults. Am J Epidemiol, 2017; 186, 961−9. doi: 10.1093/aje/kwx166 |
[4] |
Franchini M, Mannucci PM. Thrombogenicity and cardiovascular effects of ambient air pollution. Blood, 2011; 118, 2405−12. |
[5] |
Jacquemin B, Siroux V, Sanchez M, et al. Ambient Air Pollution and Adult Asthma Incidence in Six European Cohorts (ESCAPE). Environ Health Perspect, 2015; 123, 613−21. doi: 10.1289/ehp.1408206 |
[6] |
Chen Y, Wong GWK, Li J. Environmental Exposure and Genetic Predisposition as Risk Factors for Asthma in China. Allergy Asthma Immunol Res, 2016; 8, 92−100. |
[7] |
Montoya-Estrada A, Torres-Ramos YD, Flores-Pliego A, et al. Urban PM2.5 activates GAPDH and induces RBC damage in COPD patients. Front Biosci (Schol Ed), 2013; 5, 638−49. |
[8] |
Pope CA, Burnett RT, Thun MJ, et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA, 2002; 287, 1132−41. doi: 10.1001/jama.287.9.1132 |
[9] |
Hamra GB, Guha N, Cohen A, et al. Outdoor Particulate Matter Exposure and Lung Cancer: A Systematic Review and Meta-Analysis. Environ Health Perspect, 2014; 122, 906−11. doi: 10.1289/ehp/1408092 |
[10] |
Rui W, Guan LF, Zhang F, et al. PM2.5-induced oxidative stress increases adhesion molecules expression in human endothelial cells through the ERK/AKT/NF-κB-dependent pathway. J Appl Toxicol, 2016; 36, 48−59. doi: 10.1002/jat.3143 |
[11] |
Wang HY, Guo YT, Liu LM, et al. DDAH1 plays dual roles in PM2.5 induced cell death in A549 cells. Biochim Biophys Acta, 2016; 1860, 2793−801. doi: 10.1016/j.bbagen.2016.03.022 |
[12] |
He M, Ichinose T, Yoshida S, et al. PM2.5-induced lung inflammation in mice: Differences of inflammatory response in macrophages and type Ⅱ alveolar cells. J Appl Toxicol, 2017; 37, 1203−18. doi: 10.1002/jat.3482 |
[13] |
Wang HY, Shen XY, Tian GX, et al. AMPKα2 deficiency exacerbates long-term PM2.5 exposure-induced lung injury and cardiac dysfunction. Free Radic Biol Med, 2018; 121, 202−14. doi: 10.1016/j.freeradbiomed.2018.05.008 |
[14] |
Song L, Li D, Li XP, et al. Exposure to PM2.5 induces aberrant activation of NF-κB in human airway epithelial cells by downregulating miR-331 expression. Environ Toxicol Pharmacol, 2017; 50, 192−9. doi: 10.1016/j.etap.2017.02.011 |
[15] |
Riva DR, Magalhães CB, Lopes AA, et al. Low dose of fine particulate matter (PM2.5) can induce acute oxidative stress, inflammation and pulmonary impairment in healthy mice. Inhal Toxicol, 2011; 23, 257−67. doi: 10.3109/08958378.2011.566290 |
[16] |
Wang HY, Shen XY, Liu JL, et al. The effect of exposure time and concentration of airborne PM2.5 on lung injury in mice: A transcriptome analysis. Redox Biol, 2019; 26, 101264. doi: 10.1016/j.redox.2019.101264 |
[17] |
Vattanasit U, Navasumrit P, Khadka MB, et al. Oxidative DNA damage and inflammatory responses in cultured human cells and in humans exposed to traffic-related particles. IInt J Hyg Environ Health, 2014; 217, 23−33. doi: 10.1016/j.ijheh.2013.03.002 |
[18] |
Oh SM, Kim HR, Park YJ, et al. Organic extracts of urban air pollution particulate matter (PM2.5)-induced genotoxicity and oxidative stress in human lung bronchial epithelial cells (BEAS-2B cells). Mutat Res: Genet Toxicol Environ Mutagen, 2011; 723, 142−51. doi: 10.1016/j.mrgentox.2011.04.003 |
[19] |
Cachon BF, Firmin S, Verdin A, et al. Proinflammatory effects and oxidative stress within human bronchial epithelial cells exposed to atmospheric particulate matter (PM2.5 and PM > 2.5) collected from Cotonou, Benin. Environ Pollut, 2014; 185, 340−51. doi: 10.1016/j.envpol.2013.10.026 |
[20] |
Latorre-Rojas EJ, Prat-Subirana JA, Peirau-Terés X, et al. Determination of functional fitness age in women aged 50 and older. J Sport Health Sci, 2019; 8, 267−72. doi: 10.1016/j.jshs.2017.01.010 |
[21] |
Yáñez-Mó M, Siljander PRM, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles, 2015; 4, 27066. doi: 10.3402/jev.v4.27066 |
[22] |
Shao HL, Im H, Castro CM, et al. New Technologies for Analysis of Extracellular Vesicles. Chem Rev, 2018; 118, 1917−50. doi: 10.1021/acs.chemrev.7b00534 |
[23] |
Wang HY, Xie YL, Salvador AM, et al. Exosomes: Multifaceted Messengers in Atherosclerosis. Curr Atheroscler Rep, 2020; 22, 57. doi: 10.1007/s11883-020-00871-7 |
[24] |
Kubo H. Extracellular Vesicles in Lung Disease. Chest, 2018; 153, 210−216. doi: 10.1016/j.chest.2017.06.026 |
[25] |
Cañas JA, Sastre B, Rodrigo-Muñoz JM, et al. Exosomes: A new approach to asthma pathology. Clin Chim Acta, 2019; 495, 139−47. doi: 10.1016/j.cca.2019.04.055 |
[26] |
Fujita Y, Kosaka N, Araya J, et al. Extracellular vesicles in lung microenvironment and pathogenesis. Trends Mol Med, 2015; 21, 533−42. doi: 10.1016/j.molmed.2015.07.004 |
[27] |
Kadota T, Fujita Y, Yoshioka Y, et al. Extracellular Vesicles in Chronic Obstructive Pulmonary Disease. Int J Mol Sci, 2016; 17, 1801. |
[28] |
Moon HG, Kim SH, Gao JM, et al. CCN1 secretion and cleavage regulate the lung epithelial cell functions after cigarette smoke. Am J Physiol Lung Cell Mol Physiol, 2014; 307, L326−37. doi: 10.1152/ajplung.00102.2014 |
[29] |
Tan DBA, Armitage J, Teo TH, et al. Elevated levels of circulating exosome in COPD patients are associated with systemic inflammation. Respir Med, 2017; 132, 261−4. doi: 10.1016/j.rmed.2017.04.014 |
[30] |
Pergoli L, Cantone L, Favero C, et al. Extracellular vesicle-packaged miRNA release after short-term exposure to particulate matter is associated with increased coagulation. Part Fibre Toxicol, 2017; 14, 32. doi: 10.1186/s12989-017-0214-4 |
[31] |
Vicencio JM, Yellon DM, Sivaraman V, et al. Plasma exosomes protect the myocardium from ischemia-reperfusion injury. J Am Coll Cardiol, 2015; 65, 1525−36. doi: 10.1016/j.jacc.2015.02.026 |
[32] |
Ju CW, Shen Y, Ma GS, et al. Transplantation of Cardiac Mesenchymal Stem Cell-Derived Exosomes Promotes Repair in Ischemic Myocardium. J Cardiovasc Transl Res, 2018; 11, 420−8. doi: 10.1007/s12265-018-9822-0 |
[33] |
Ju CW, Li YJ, Shen Y, et al. Transplantation of Cardiac Mesenchymal Stem Cell-Derived Exosomes for Angiogenesis. J Cardiovasc Transl Res, 2018; 11, 429−37. doi: 10.1007/s12265-018-9824-y |
[34] |
Liu ZT, Zhang ZR, Yao JH, et al. Serum extracellular vesicles promote proliferation of H9C2 cardiomyocytes by increasing miR-17-3p. Biochem Biophys Res Commun, 2018; 499, 441−6. doi: 10.1016/j.bbrc.2018.03.157 |
[35] |
Li PF, Liu ZY, Xie Y, et al. Serum Exosomes Attenuate H2O2-Induced Apoptosis in Rat H9C2 Cardiomyocytes via ERK1/2. J Cardiovasc Transl Res, 2019; 12, 37−44. doi: 10.1007/s12265-018-9791-3 |
[36] |
Liu Y, Liu ZY, Xie Y, et al. Serum Extracellular Vesicles Retard H9C2 Cell Senescence by Suppressing miR-34a Expression. J Cardiovasc Transl Res, 2019; 12, 45−50. doi: 10.1007/s12265-018-9847-4 |
[37] |
Perlman H, Zhang XJ, Chen MW, et al. An elevated bax/bcl-2 ratio corresponds with the onset of prostate epithelial cell apoptosis. Cell Death Differ, 1999; 6, 48−54. doi: 10.1038/sj.cdd.4400453 |
[38] |
Tsuruta F, Masuyama N, Gotoh Y. The phosphatidylinositol 3-kinase (PI3K)-Akt pathway suppresses Bax translocation to mitochondria. J Biol Chem, 2002; 277, 14040−7. doi: 10.1074/jbc.M108975200 |
[39] |
Bei YH, Xu TZ, Lv DC, et al. Exercise-induced circulating extracellular vesicles protect against cardiac ischemia-reperfusion injury. Basic Res Cardiol, 2017; 112, 38. doi: 10.1007/s00395-017-0628-z |
[40] |
Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles, 2018; 7, 1535750. doi: 10.1080/20013078.2018.1535750 |
[41] |
Li J, Zhou QL, Liang YJ, et al. miR-486 inhibits PM2.5-induced apoptosis and oxidative stress in human lung alveolar epithelial A549 cells. Ann Transl Med, 2018; 6, 209. doi: 10.21037/atm.2018.06.09 |
[42] |
Burke JM, Zufall MJ, Ozkaynak H. A population exposure model for particulate matter: case study results for PM(2.5) in Philadelphia, PA. J Expo Anal Environ Epidemiol, 2001; 11, 470−89. doi: 10.1038/sj.jea.7500188 |
[43] |
Zhang SJ, Zhang WX, Zeng XJ, et al. Inhibition of Rac1 activity alleviates PM2.5-induced pulmonary inflammation via the AKT signaling pathway. Toxicol Lett, 2019; 310, 61−9. doi: 10.1016/j.toxlet.2019.04.017 |
[44] |
Zhou W, Tian DD, He J, et al. Repeated PM2.5 exposure inhibits BEAS-2B cell P53 expression through ROS-Akt-DNMT3B pathway-mediated promoter hypermethylation. Oncotarget, 2016; 7, 20691−703. doi: 10.18632/oncotarget.7842 |
[45] |
Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell, 1999; 96, 857−68. doi: 10.1016/S0092-8674(00)80595-4 |
[46] |
Winder A, Unno K, Yu YN, et al. The allosteric AKT inhibitor, MK2206, decreases tumor growth and invasion in patient derived xenografts of endometrial cancer. Cancer Biol Ther, 2017; 18, 958−64. doi: 10.1080/15384047.2017.1281496 |
[47] |
Xing YF, Xu YH, Shi MH, et al. The impact of PM2.5 on the human respiratory system. J Thorac Dis, 2016; 8, E69−74. |
[48] |
Zhao JZ, Bo L, Gong CY, et al. Preliminary study to explore gene-PM2.5 interactive effects on respiratory system in traffic policemen. Int J Occup Med Environ Health, 2015; 28, 971−83. doi: 10.13075/ijomeh.1896.00370 |
[49] |
Xu T, Hou J, Cheng J, et al. Estimated individual inhaled dose of fine particles and indicators of lung function: A pilot study among Chinese young adults. Environ Pollut, 2018; 235, 505−13. doi: 10.1016/j.envpol.2017.12.074 |
[50] |
Gadais T, Boulanger M, Trudeau F, et al. Environments favorable to healthy lifestyles: A systematic review of initiatives in Canada. J Sport Health Sci, 2018; 7, 7−18. doi: 10.1016/j.jshs.2017.09.005 |
[51] |
WHO. Ambient (outdoor) air pollution. https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health2018. [2018-05-02]. |
[52] |
Huggins FE, Huffman GP, Robertson JD. Speciation of elements in NIST particulate matter SRMs 1648 and 1650. J Hazard Mater, 2000; 74, 1−23. doi: 10.1016/S0304-3894(99)00195-8 |
[53] |
Tang SD, LaDuke G, Chien W, et al. Impacts of biodiesel blends on PM2.5, particle number and size distribution, and elemental/organic carbon from nonroad diesel generators. Fuel, 2016; 172, 11−9. doi: 10.1016/j.fuel.2015.12.060 |
[54] |
Danielsen PH, Loft S, Møller P. DNA damage and cytotoxicity in type Ⅱ lung epithelial (A549) cell cultures after exposure to diesel exhaust and urban street particles. Part Fibre Toxicol, 2008; 5, 6. doi: 10.1186/1743-8977-5-6 |
[55] |
Saber AT, Jacobsen NR, Bornholdt J, et al. Cytokine expression in mice exposed to diesel exhaust particles by inhalation. Role of tumor necrosis factor. Part Fibre Toxicol, 2006; 3, 4. doi: 10.1186/1743-8977-3-4 |
[56] |
Zheng RX, Tao L, Jian H, et al. NLRP3 inflammasome activation and lung fibrosis caused by airborne fine particulate matter. Ecotoxicol Environ Saf, 2018; 163, 612−9. doi: 10.1016/j.ecoenv.2018.07.076 |
[57] |
Hu Y, Wang LS, Li Y, et al. Effects of particulate matter from straw burning on lung fibrosis in mice. Environ Toxicol Pharmacol, 2017; 56, 249−58. doi: 10.1016/j.etap.2017.10.001 |
[58] |
Shen Y, Zhang ZH, Hu D, et al. The airway inflammation induced by nasal inoculation of PM2.5 and the treatment of bacterial lysates in rats. Sci Rep, 2018; 8, 9816. doi: 10.1038/s41598-018-28156-9 |
[59] |
Zhu ZG, Chen XW, Sun JP, et al. Inhibition of nuclear thioredoxin aggregation attenuates PM2.5-induced NF-κB activation and pro-inflammatory responses. Free Radic Biol Med, 2019; 130, 206−14. |
[60] |
Ge CX, Xu MX, Qin YT, et al. iRhom2 loss alleviates renal injury in long-term PM2.5-exposed mice by suppression of inflammation and oxidative stress. Redox Biol, 2018; 19, 147−57. doi: 10.1016/j.redox.2018.08.009 |
[61] |
Wang J, Zhang WJ, Xiong W, et al. PM2.5 stimulated the release of cytokines from BEAS-2B cells through activation of IKK/NF- κB pathway. Hum Exp Toxicol, 2018; 311−20. |
[62] |
Mizrak A, Bolukbasi MF, Ozdener GB, et al. Genetically engineered microvesicles carrying suicide mRNA/protein inhibit schwannoma tumor growth. Mol Ther, 2013; 21, 101−8. doi: 10.1038/mt.2012.161 |
[63] |
Wang LJ, Lv YC, Li GP, et al. MicroRNAs in heart and circulation during physical exercise. J Sport Health Sci, 2018; 7, 433−41. doi: 10.1016/j.jshs.2018.09.008 |
[64] |
Surman M, Drożdż A, Stępień E, et al. Extracellular Vesicles as Drug Delivery Systems - Methods of Production and Potential Therapeutic Applications. Curr Pharm Des, 2019; 25, 132−54. doi: 10.2174/1381612825666190306153318 |
[65] |
Huang XY, Yuan TZ, Tschannen M, et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics, 2013; 14, 319. doi: 10.1186/1471-2164-14-319 |
[66] |
Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in three Akts. Genes Dev, 1999; 13, 2905−27. doi: 10.1101/gad.13.22.2905 |
[67] |
Li J, Zhou QL, Yang TT, et al. SGK1 inhibits PM2.5-induced apoptosis and oxidative stress in human lung alveolar epithelial A549cells. Biochem Biophys Res Commun, 2018; 496, 1291−5. doi: 10.1016/j.bbrc.2018.02.002 |