[1] Gamsjaeger S, Fratzl P, Paschalis EP. Interplay between mineral crystallinity and mineral accumulation in health and postmenopausal osteoporosis. Acta Biomater, 2021; 124, 374−81. doi:  10.1016/j.actbio.2021.02.011
[2] Zhang L, Zheng YL, Wang R, et al. Exercise for osteoporosis: a literature review of pathology and mechanism. Front Immunol, 2022; 13, 1005665. doi:  10.3389/fimmu.2022.1005665
[3] Luo M, Zhao ZH, Yi JR. Osteogenesis of bone marrow mesenchymal stem cell in hyperglycemia. Front Endocrinol (Lausanne), 2023; 14, 1150068. doi:  10.3389/fendo.2023.1150068
[4] Mohamed-Ahmed S, Fristad I, Lie SA, et al. Adipose-derived and bone marrow mesenchymal stem cells: a donor-matched comparison. Stem Cell Res Ther, 2018; 9, 168. doi:  10.1186/s13287-018-0914-1
[5] Chu DT, Phuong TNT, Tien NLB, et al. An update on the progress of isolation, culture, storage, and clinical application of human bone marrow mesenchymal stem/stromal cells. Int J Mol Sci, 2020; 21, 708. doi:  10.3390/ijms21030708
[6] Wang C, Meng HY, Wang X, et al. Differentiation of bone marrow mesenchymal stem cells in osteoblasts and adipocytes and its role in treatment of osteoporosis. Med Sci Monit, 2016; 22, 226−33. doi:  10.12659/MSM.897044
[7] Wang LL, Xiong F, Yang LC, et al. A seasonal change of active ingredients and mineral elements in root of Astragalus membranaceus in the Qinghai-Tibet Plateau. Biol Trace Elem Res, 2021; 199, 3950−9. doi:  10.1007/s12011-020-02486-0
[8] Chai YH, Pu X, Wu YZ, et al. Inhibitory effect of Astragalus Membranaceus on osteoporosis in SAMP6 mice by regulating vitaminD/FGF23/Klotho signaling pathway. Bioengineered, 2021; 12, 4464−74. doi:  10.1080/21655979.2021.1946633
[9] Jung Koo H, Sohn EH, Kim YJ, et al. Effect of the combinatory mixture of Rubus coreanus Miquel and Astragalus membranaceus Bunge extracts on ovariectomy-induced osteoporosis in mice and anti-RANK signaling effect. J Ethnopharmacol, 2014; 151, 951−9. doi:  10.1016/j.jep.2013.12.008
[10] He YH, Chen D, Guo Q, et al. MicroRNA-151a-3p functions in the regulation of osteoclast differentiation: significance to postmenopausal osteoporosis. Clin Interv Aging, 2021; 16, 1357−66. doi:  10.2147/CIA.S289613
[11] Ge DW, Wang WW, Chen HT, et al. Functions of microRNAs in osteoporosis. Eur Rev Med Pharmacol Sci, 2017; 21, 4784−9.
[12] Zhang J, Zhang T, Tang BS, et al. The miR-187 induced bone reconstruction and healing in a mouse model of osteoporosis, and accelerated osteoblastic differentiation of human multipotent stromal cells by targeting BARX2. Pathol Res Pract, 2021; 219, 153340. doi:  10.1016/j.prp.2021.153340
[13] Alrashed MM, Alshehry AS, Ahmad M, et al. miRNA Let-7a-5p targets RNA KCNQ1OT1 and participates in osteoblast differentiation to improve the development of osteoporosis. Biochem Genet, 2022; 60, 370−81. doi:  10.1007/s10528-021-10105-3
[14] Tang XY, Li XY, Zhang DY, et al. Astragaloside-IV alleviates high glucose-induced ferroptosis in retinal pigment epithelial cells by disrupting the expression of miR-138-5p/Sirt1/Nrf2. Bioengineered, 2022; 13, 8238−53. doi:  10.1080/21655979.2022.2049471
[15] Wei YC, Wu Y, Feng K, et al. Astragaloside IV inhibits cardiac fibrosis via miR-135a-TRPM7-TGF-β/Smads pathway. J Ethnopharmacol, 2020; 249, 112404. doi:  10.1016/j.jep.2019.112404
[16] Li DX, Li GC, Chen Y, et al. Astragaloside IV protects ATDC5 cells from lipopolysaccharide-caused damage through regulating miR-203/MyD88. Pharm Biol, 2020; 58, 89−97. doi:  10.1080/13880209.2019.1705355
[17] Cao YJ, Lv QX, Li Y. Astragaloside IV improves tibial defect in rats and promotes proliferation and osteogenic differentiation of hBMSCs through MiR-124-3p. 1/STAT3 axis. J Nat Prod, 2021; 84, 287−97. doi:  10.1021/acs.jnatprod.0c00975
[18] Wu XH, Dou B, Sun NY, et al. Astragalus saponin IV promotes osteogenic differentiation of bone marrow mesenchymal stem cells via miR-21/NGF/BMP2/Runx2 pathway. Acta Histochem, 2020; 122, 151549. doi:  10.1016/j.acthis.2020.151549
[19] Waki T, Lee SY, Niikura T, et al. Profiling microRNA expression during fracture healing. BMC Musculoskelet Disord, 2016; 17, 83. doi:  10.1186/s12891-016-0931-0
[20] Liu YP, Wang YX, Cheng X, et al. MiR-181d-5p regulates implant surface roughness-induced osteogenic differentiation of bone marrow stem cells. Mater Sci Eng C Mater Biol Appl, 2021; 121, 111801. doi:  10.1016/j.msec.2020.111801
[21] Dai YT, Wang DB, Zhao MJ, et al. Quality markers for astragali radix and its products based on process analysis. Front Pharmacol, 2020; 11, 554777. doi:  10.3389/fphar.2020.554777
[22] Li P, Kong JC, Chen ZM, et al. Aloin promotes osteogenesis of bone-marrow-derived mesenchymal stem cells via the ERK1/2-dependent Runx2 signaling pathway. J Nat Med, 2019; 73, 104−13. doi:  10.1007/s11418-018-1249-z
[23] Shen WX, Sun B, Zhou CH, et al. CircFOXP1/FOXP1 promotes osteogenic differentiation in adipose-derived mesenchymal stem cells and bone regeneration in osteoporosis via miR-33a-5p. J Cell Mol Med, 2020; 24, 12513−24. doi:  10.1111/jcmm.15792
[24] Ren LR, Yao RB, Wang SY, et al. MiR-27a-3p promotes the osteogenic differentiation by activating CRY2/ERK1/2 axis. Mol Med, 2021; 27, 43.
[25] Zhong LN, Zhang YZ, Li H, et al. Overexpressed miR-196a accelerates osteogenic differentiation in osteoporotic mice via GNAS-dependent Hedgehog signaling pathway. J Cell Biochem, 2019; 120, 19422−31. doi:  10.1002/jcb.29166
[26] Liu H, Yi X, Tu ST, et al. Kaempferol promotes BMSC osteogenic differentiation and improves osteoporosis by downregulating miR-10a-3p and upregulating CXCL12. Mol Cell Endocrinol, 2021; 520, 111074. doi:  10.1016/j.mce.2020.111074
[27] Huang Q, Zhang F, Fu HY, et al. Epigenetic regulation of miR-518a-5p-CCR6 feedback loop promotes both proliferation and invasion in diffuse large B cell lymphoma. Epigenetics, 2021; 16, 28−44. doi:  10.1080/15592294.2020.1786317
[28] You MR, Zhang L, Zhang XX, et al. MicroRNA-197-3p inhibits the osteogenic differentiation in osteoporosis by down-regulating KLF 10. Clin Interv Aging, 2021; 16, 107−17. doi:  10.2147/CIA.S269171
[29] Che MX, Gong WQ, Zhao Y, et al. Long noncoding RNA HCG18 inhibits the differentiation of human bone marrow-derived mesenchymal stem cells in osteoporosis by targeting miR-30a-5p/NOTCH1 axis. Mol Med, 2020; 26, 106.
[30] Li T, Jiang HX, Li Y, et al. Estrogen promotes lncRNA H19 expression to regulate osteogenic differentiation of BMSCs and reduce osteoporosis via miR-532-3p/SIRT1 axis. Mol Cell Endocrinol, 2021; 527, 111171. doi:  10.1016/j.mce.2021.111171
[31] Lu JS, Yang JZ, Zheng YS, et al. Extracellular vesicles from endothelial progenitor cells prevent steroid-induced osteoporosis by suppressing the ferroptotic pathway in mouse osteoblasts based on bioinformatics evidence. Sci Rep, 2019; 9, 16130. doi:  10.1038/s41598-019-52513-x
[32] Wang QJ, Li Y, Zhang YX, et al. LncRNA MEG3 inhibited osteogenic differentiation of bone marrow mesenchymal stem cells from postmenopausal osteoporosis by targeting miR-133a-3p. Biomed Pharmacother, 2017; 89, 1178−86. doi:  10.1016/j.biopha.2017.02.090
[33] Sun JR, Zhang X, Zhang Y. MiR-214 prevents the progression of diffuse large B-cell lymphoma by targeting PD-L1. Cell Mol Biol Lett, 2019; 24, 68. doi:  10.1186/s11658-019-0190-9
[34] Lin C, Zhong WJ, Yan W, et al. Circ-SLC8A1 regulates osteoporosis through blocking the inhibitory effect of miR-516b-5p on AKAP2 expression. J Gene Med, 2020; 22, e3263. doi:  10.1002/jgm.3263
[35] Li YG, Yu P, Fu WW, et al. Ginseng-Astragalus-oxymatrine injection ameliorates cyclophosphamide-induced immunosuppression in mice and enhances the immune activity of RAW264.7 cells. J Ethnopharmacol, 2021; 279, 114387. doi:  10.1016/j.jep.2021.114387
[36] Kang SC, Kim HJ, Kim MH. Effects of Astragalus membranaceus with supplemental calcium on bone mineral density and bone metabolism in calcium-deficient ovariectomized rats. Biol Trace Elem Res, 2013; 151, 68−74. doi:  10.1007/s12011-012-9527-1
[37] Huh JE, Kim SJ, Kang JW, et al. The standardized BHH10 extract, a combination of Astragalus membranaceus, Cinnamomum cassia, and Phellodendron amurense, reverses bone mass and metabolism in a rat model of postmenopausal osteoporosis. Phytother Res, 2015; 29, 30−9. doi:  10.1002/ptr.5218
[38] Sun NY, Liu XL, Gao J, et al. Astragaloside-IV modulates NGF-induced osteoblast differentiation via the GSK3β/β-catenin signalling pathway. Mol Med Rep, 2021; 23, 19.
[39] Kharode YP, Sharp MC, Bodine PVN. Utility of the ovariectomized rat as a model for human osteoporosis in drug discovery. Methods Mol Biol, 2008; 455, 111−24.
[40] Liu F, Yuan YJ, Bai L, et al. LRRc17 controls BMSC senescence via mitophagy and inhibits the therapeutic effect of BMSCs on ovariectomy-induced bone loss. Redox Biol, 2021; 43, 101963. doi:  10.1016/j.redox.2021.101963
[41] Yeh PS, Lee YW, Chang WH, et al. Biomechanical and tomographic differences in the microarchitecture and strength of trabecular and cortical bone in the early stage of male osteoporosis. PLoS One, 2019; 14, e0219718. doi:  10.1371/journal.pone.0219718
[42] Zhu MS, Shan J, Xu HE, et al. Glaucocalyxin A suppresses osteoclastogenesis induced by RANKL and osteoporosis induced by ovariectomy by inhibiting the NF-κB and Akt pathways. J Ethnopharmacol, 2021; 276, 114176. doi:  10.1016/j.jep.2021.114176
[43] De-Ugarte L, Yoskovitz G, Balcells S, et al. MiRNA profiling of whole trabecular bone: identification of osteoporosis-related changes in MiRNAs in human hip bones. BMC Med Genomics, 2015; 8, 75.
[44] Oliemuller E, Newman R, Tsang SM, et al. SOX11 promotes epithelial/mesenchymal hybrid state and alters tropism of invasive breast cancer cells. eLife, 2020; 9, e58374. doi:  10.7554/eLife.58374
[45] Tsang SM, Oliemuller E, Howard BA. Regulatory roles for SOX11 in development, stem cells and cancer. Semin Cancer Biol, 2020; 67, 3−11. doi:  10.1016/j.semcancer.2020.06.015
[46] Kavyanifar A, Turan S, Lie DC. SoxC transcription factors: multifunctional regulators of neurodevelopment. Cell Tissue Res, 2018; 371, 91−103. doi:  10.1007/s00441-017-2708-7
[47] Wasik AM, Lord M, Wang X, et al. SOXC transcription factors in mantle cell lymphoma: the role of promoter methylation in SOX11 expression. Sci Rep, 2013; 3, 1400. doi:  10.1038/srep01400
[48] Chang KC, Hertz J. SoxC transcription factors in retinal development and regeneration. Neural Regen Res, 2017; 12, 1048−51. doi:  10.4103/1673-5374.211178
[49] Xu SP, Yu JC, Wang ZR, et al. SOX11 promotes osteoarthritis through induction of TNF-α. Pathol Res Pract, 2019; 215, 152442. doi:  10.1016/j.prp.2019.152442
[50] Yu FY, Wu FZ, Li FF, et al. Wnt7b-induced Sox11 functions enhance self-renewal and osteogenic commitment of bone marrow mesenchymal stem cells. Stem Cells, 2020; 38, 1020−33. doi:  10.1002/stem.3192
[51] Kato K, Bhattaram P, Penzo-Méndez A, et al. SOXC transcription factors induce cartilage growth plate formation in mouse embryos by promoting noncanonical WNT signaling. J Bone Miner Res, 2015; 30, 1560−71. doi:  10.1002/jbmr.2504
[52] Meng CY, Xue F, Zhao ZQ, et al. Influence of MicroRNA-141 on inhibition of the proliferation of bone marrow mesenchymal stem cells in steroid-induced osteonecrosis via SOX11. Orthop Surg, 2020; 12, 277−85. doi:  10.1111/os.12603