[1] Obermayer-Straub P, Strassburg CP, Manns MP. Autoimmune hepatitis. J Hepatol, 2000; 32, 181−97.
[2] Mieli-Vergani G, Vergani D, Czaja AJ, et al. Autoimmune hepatitis. Nat Rev Dis Primers, 2018; 4, 18017. doi:  10.1038/nrdp.2018.17
[3] Lamba M, Ngu JH, Stedman CAM. Trends in incidence of autoimmune liver diseases and increasing incidence of autoimmune hepatitis. Clin Gastroenterol Hepatol, 2021; 19, 573-79. e1.
[4] Heymann F, Hamesch K, Weiskirchen R, et al. The concanavalin A model of acute hepatitis in mice. Lab Anim, 2015; 49, 12−20. doi:  10.1177/0023677215572841
[5] Hao JH, Sun WL, Xu HC. Pathogenesis of Concanavalin A induced autoimmune hepatitis in mice. Int Immunopharmacol, 2022; 102, 108411. doi:  10.1016/j.intimp.2021.108411
[6] Chi G, Pei JH, Li XQ. EZH2-mediated H3K27me3 promotes autoimmune hepatitis progression by regulating macrophage polarization. Int Immunopharmacol, 2022; 106, 108612. doi:  10.1016/j.intimp.2022.108612
[7] Liu Y, Liu H, Zhu JS, et al. Interleukin-34 drives macrophage polarization to the M2 phenotype in autoimmune hepatitis. Pathol -Res Pract, 2019; 215, 152493. doi:  10.1016/j.prp.2019.152493
[8] Grønbæk H, Kreutzfeldt M, Kazankov K, et al. Single-centre experience of the macrophage activation marker soluble (s)CD163 - associations with disease activity and treatment response in patients with autoimmune hepatitis. Aliment Pharmacol Ther, 2016; 44, 1062−70. doi:  10.1111/apt.13801
[9] Roohani S, Tacke F. Liver injury and the macrophage issue: molecular and mechanistic facts and their clinical relevance. Int J Mol Sci, 2021; 22, 7249. doi:  10.3390/ijms22147249
[10] Guilliams M, Scott CL. Liver macrophages in health and disease. Immunity, 2022; 55, 1515−29. doi:  10.1016/j.immuni.2022.08.002
[11] Guo LP, Zhou L, Li HX, et al. The study of liver macrophages polarization in patients with autoimmune hepatitis. Chin J Intern Med, 2017; 56, 763−5. (In Chinese
[12] Li X, Qiao Y, Chang LS, et al. Role of C6ORF120, an N-glycosylated protein, is implicated in apoptosis of CD4+ T lymphocytes. Chin Med J, 2011; 124, 3560−7.
[13] Wu YN, Zhang R, Song XC, et al. C6orf120 gene knockout in rats mitigates concanavalin A-induced autoimmune hepatitis via regulating NKT cells. Cell Immunol, 2022; 371, 104467. doi:  10.1016/j.cellimm.2021.104467
[14] Zhang MK, Ma HM, Zhang J, et al. Deletion of the C6orf120 gene with unknown function ameliorates autoimmune hepatitis induced by concanavalin A. Cell Immunol, 2018; 331, 9−15. doi:  10.1016/j.cellimm.2018.04.017
[15] National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the care and use of laboratory animals. 8th ed. National Academies Press (US). 2011.
[16] Ishak K, Baptista A, Bianchi L, et al. Histological grading and staging of chronic hepatitis. J Hepatol, 1995; 22, 696−9. doi:  10.1016/0168-8278(95)80226-6
[17] Orme J, Mohan C. Macrophage subpopulations in systemic lupus erythematosus. Discov Med, 2012; 13, 151−8.
[18] Chanput W, Mes JJ, Wichers HJ. THP-1 cell line: an in vitro cell model for immune modulation approach. Int Immunopharmacol, 2014; 23, 37−45. doi:  10.1016/j.intimp.2014.08.002
[19] Wang C, Ma C, Gong LH, et al. Macrophage polarization and its role in liver disease. Front Immunol, 2021; 12, 803037. doi:  10.3389/fimmu.2021.803037
[20] Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity, 2014; 41, 14−20. doi:  10.1016/j.immuni.2014.06.008
[21] Sucher E, Sucher R, Gradistanac T, et al. Autoimmune hepatitis-immunologically triggered liver pathogenesis-diagnostic and therapeutic strategies. J Immunol Res, 2019; 2019, 9437043.
[22] Han RR, Xiao JT, Zhai H, et al. Dimethyl fumarate attenuates experimental autoimmune neuritis through the nuclear factor erythroid-derived 2-related factor 2/hemoxygenase-1 pathway by altering the balance of M1/M2 macrophages. J Neuroinflammation, 2016; 13, 97. doi:  10.1186/s12974-016-0559-x
[23] Boutilier AJ, Elsawa SF. Macrophage polarization states in the tumor microenvironment. Int J Mol Sci, 2021; 22, 6995. doi:  10.3390/ijms22136995
[24] Funes SC, Rios M, Escobar-Vera J, et al. Implications of macrophage polarization in autoimmunity. Immunology, 2018; 154, 186−95. doi:  10.1111/imm.12910
[25] Zhang J, Muri J, Fitzgerald G, et al. Endothelial lactate controls muscle regeneration from ischemia by inducing M2-like macrophage polarization. Cell Metab, 2020; 31, 1136-53. e7.
[26] Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest, 2012; 122, 787−95. doi:  10.1172/JCI59643
[27] Orecchioni M, Ghosheh Y, Pramod AB, et al. Macrophage Polarization: Different Gene Signatures in M1(LPS+) vs. Classically and M2(LPS-) vs. Alternatively activated macrophages. Front Immunol, 2019; 10, 1084. doi:  10.3389/fimmu.2019.01084
[28] Liu YC, Zou XB, Chai YF, et al. Macrophage polarization in inflammatory diseases. Int J Biol Sci, 2014; 10, 520−9. doi:  10.7150/ijbs.8879
[29] Muñoz J, Akhavan NS, Mullins AP, et al. Macrophage polarization and osteoporosis: a review. Nutrients, 2020; 12, 2999. doi:  10.3390/nu12102999
[30] Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity, 2010; 32, 593−604. doi:  10.1016/j.immuni.2010.05.007
[31] LIU H, WANG X, WANG P, et al. Novel protein C6ORF120 promotes apoptosis through mitochondria-dependent pathway in CD4+T lymphocytes. Biomed Environ Sci, 2023; 36, 639−43.
[32] Kerneur C, Cano CE, Olive D. Major pathways involved in macrophage polarization in cancer. Front Immunol, 2022; 13, 1026954. doi:  10.3389/fimmu.2022.1026954
[33] Xin P, Xu XY, Deng CJ, et al. The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int Immunopharmacol, 2020; 80, 106210. doi:  10.1016/j.intimp.2020.106210
[34] Huang IH, Chung WH, Wu PC, et al. JAK-STAT signaling pathway in the pathogenesis of atopic dermatitis: an updated review. Front Immunol, 2022; 13, 1068260. doi:  10.3389/fimmu.2022.1068260
[35] Bode JG, Ehlting C, Häussinger D. The macrophage response towards LPS and its control through the p38MAPK-STAT3 axis. Cell Signal, 2012; 24, 1185−94. doi:  10.1016/j.cellsig.2012.01.018
[36] Qin HW, Holdbrooks AT, Liu YD, et al. SOCS3 deficiency promotes M1 macrophage polarization and inflammation. J Immunol, 2012; 189, 3439−48. doi:  10.4049/jimmunol.1201168
[37] Zhang J, Zhang MK, Ma HM, et al. C6orf120 gene deficiency may be vulnerable to carbon tetrachloride induced acute hepatic injury in rats. Arch Med Sci, 2020; 18, 1626−37.
[38] Hu F, Tong JK, Deng BL, et al. MiR-495 regulates macrophage M1/M2 polarization and insulin resistance in high-fat diet-fed mice via targeting FTO. Pflugers Arch- Eur J Physiol, 2019; 471, 1529−37. doi:  10.1007/s00424-019-02316-w
[39] Xiao T, Zou ZL, Xue JC, et al. LncRNA H19-mediated M2 polarization of macrophages promotes myofibroblast differentiation in pulmonary fibrosis induced by arsenic exposure. Environ Pollut, 2021; 268, 115810. doi:  10.1016/j.envpol.2020.115810
[40] Wang YH, Smith W, Hao DJ, et al. M1 and M2 macrophage polarization and potentially therapeutic naturally occurring compounds. Int Immunopharmacol, 2019; 70, 459−66. doi:  10.1016/j.intimp.2019.02.050
[41] Najm A, Masson FM, Preuss P, et al. MicroRNA-17-5p reduces inflammation and bone erosions in mice with collagen-induced arthritis and directly targets the JAK/STAT pathway in rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Rheumatol, 2020; 72, 2030−9. doi:  10.1002/art.41441
[42] Lynam-Lennon N, Heavey S, Sommerville G, et al. MicroRNA-17 is downregulated in esophageal adenocarcinoma cancer stem-like cells and promotes a radioresistant phenotype. Oncotarget, 2017; 8, 11400−13. doi:  10.18632/oncotarget.13940