[1] |
Silverberg MS, Satsangi J, Ahmad T, et al. Toward an integrated clinical, molecular and serological classification of inflammatory bowel disease: report of a Working Party of the 2005 Montreal World Congress of Gastroenterology. Can J Gastroenterol, 2005; 19 Suppl A, 5A-36A. |
[2] |
Ferrari AJ, Santomauro DF, Aali A, et al. Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet, 2024; 403, 2133−61. doi: 10.1016/S0140-6736(24)00757-8 |
[3] |
Rakowsky S, Papamichael K, Cheifetz AS. Choosing the right biologic for complications of inflammatory bowel disease. Expert Rev Gastroenterol Hepatol, 2022; 16, 235−49. doi: 10.1080/17474124.2022.2036122 |
[4] |
Nishida A, Inoue R, Inatomi O, et al. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol, 2018; 11, 1−10. doi: 10.1007/s12328-017-0813-5 |
[5] |
Beamish LA, Osornio-Vargas AR, Wine E. Air pollution: an environmental factor contributing to intestinal disease. J Crohns Colitis, 2011; 5, 279−86. doi: 10.1016/j.crohns.2011.02.017 |
[6] |
Opstelten JL, Beelen RMJ, Leenders M, et al. Exposure to ambient air pollution and the risk of inflammatory bowel disease: a European nested case-control study. Dig Dis Sci, 2016; 61, 2963−71. doi: 10.1007/s10620-016-4249-4 |
[7] |
Ananthakrishnan AN, Bernstein CN, Iliopoulos D, et al. Environmental triggers in IBD: a review of progress and evidence. Nat Rev Gastroenterol Hepatol, 2018; 15, 39−49. doi: 10.1038/nrgastro.2017.136 |
[8] |
Pritchett N, Spangler EC, Gray GM, et al. Exposure to outdoor particulate matter air pollution and risk of gastrointestinal cancers in adults: a systematic review and meta-analysis of epidemiologic evidence. Environ Health Perspect, 2022; 130, 036001. doi: 10.1289/EHP9620 |
[9] |
Wang M, Wang QY, Ho SSH, et al. Chemical characteristics and sources of nitrogen-containing organic compounds at a regional site in the North China Plain during the transition period of autumn and winter. Sci Total Environ, 2022; 812, 151451. doi: 10.1016/j.scitotenv.2021.151451 |
[10] |
Li YZ, Xu L, Shan ZY, et al. Association between air pollution and type 2 diabetes: an updated review of the literature. Ther Adv Endocrinol Metab, 2019; 10, 2042018819897046. |
[11] |
Eeftens M, Phuleria HC, Meier R, et al. Spatial and temporal variability of ultrafine particles, NO2, PM2.5, PM2.5 absorbance, PM10 and PMcoarse in Swiss study areas. Atmos Environ, 2015; 111, 60−70. doi: 10.1016/j.atmosenv.2015.03.031 |
[12] |
Rasking L, Koshy P, Bongaerts E, et al. Ambient black carbon reaches the kidneys. Environ Int, 2023; 177, 107997. doi: 10.1016/j.envint.2023.107997 |
[13] |
Adami G, Pontalti M, Cattani G, et al. Association between long-term exposure to air pollution and immune-mediated diseases: a population-based cohort study. RMD Open, 2022; 8, e002055. doi: 10.1136/rmdopen-2021-002055 |
[14] |
Ananthakrishnan AN, McGinley EL, Binion DG, et al. Ambient air pollution correlates with hospitalizations for inflammatory bowel disease: an ecologic analysis. Inflamm Bowel Dis, 2011; 17, 1138−45. doi: 10.1002/ibd.21455 |
[15] |
Hu SJ, Xing HY, Wang XC, et al. Causal relationships between total physical activity and ankylosing spondylitis: a Mendelian randomization study. Front Immunol, 2022; 13, 887326. doi: 10.3389/fimmu.2022.887326 |
[16] |
Bowden J, Holmes MV. Meta-analysis and Mendelian randomization: a review. Res Synth Methods, 2019; 10, 486−96. doi: 10.1002/jrsm.1346 |
[17] |
Cao MY, Liu D, Zhang XY, et al. Association of C-reactive protein with cardiovascular outcomes: a Mendelian randomization study in the Japanese population. Biomed Environ Sci, 2022; 35, 126−32. |
[18] |
Li YJ, Kan X. Mendelian randomization analysis to analyze the effect of emergency caesarean section on different allergic diseases and related blood markers. Biomed Environ Sci, 2023; 36, 1084−9. |
[19] |
Bycroft C, Freeman C, Petkova D, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature, 2018; 562, 203−9. doi: 10.1038/s41586-018-0579-z |
[20] |
Collins R. What makes UK Biobank special? Lancet, 2012; 379, 1173-4. |
[21] |
Eeftens M, Beelen R, de Hoogh K, et al. Development of land use regression models for PM2.5, PM2.5 absorbance, PM10 and PMcoarse in 20 European study areas; Results of the ESCAPE project. Environ Sci Technol, 2012; 46, 11195−205. doi: 10.1021/es301948k |
[22] |
Yang Y, Ma XL, Pang WY, et al. Causal associations of PM2.5 and GDM: a two-sample Mendelian randomization study. Toxics, 2023; 11, 171. doi: 10.3390/toxics11020171 |
[23] |
Shen JX, Lu Y, Meng W, et al. Exploring causality between bone mineral density and frailty: a bidirectional Mendelian randomization study. PLoS One, 2024; 19, e0296867. doi: 10.1371/journal.pone.0296867 |
[24] |
Li CC, Niu MY, Guo Z, et al. A mild causal relationship between tea consumption and obesity in general population: a two-sample Mendelian randomization study. Front Genet, 2022; 13, 795049. doi: 10.3389/fgene.2022.795049 |
[25] |
Pierce BL, Ahsan H, VanderWeele TJ. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. Int J Epidemiol, 2011; 40, 740−52. doi: 10.1093/ije/dyq151 |
[26] |
Sun Y, Li Y, Yu TC, et al. Causal associations of anthropometric measurements with osteoarthritis: a Mendelian randomization study. PLoS One, 2023; 18, e0279198. doi: 10.1371/journal.pone.0279198 |
[27] |
Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol, 2017; 46, 1985−98. doi: 10.1093/ije/dyx102 |
[28] |
Fu SJ, Zhang L, Ma FZ, et al. Effects of selenium on chronic kidney disease: a Mendelian randomization study. Nutrients, 2022; 14, 4458. doi: 10.3390/nu14214458 |
[29] |
Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol, 2017; 32, 377−89. doi: 10.1007/s10654-017-0255-x |
[30] |
Bowden J, Del Greco MF, Minelli C, et al. Improving the accuracy of two-sample summary-data Mendelian randomization: moving beyond the NOME assumption. Int J Epidemiol, 2019; 48, 728−42. doi: 10.1093/ije/dyy258 |
[31] |
Wang Z, Chen M, Wei YZ, et al. The causal relationship between sleep traits and the risk of schizophrenia: a two-sample bidirectional Mendelian randomization study. BMC Psychiatry, 2022; 22, 399. doi: 10.1186/s12888-022-03946-8 |
[32] |
Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol, 2013; 37, 658−65. doi: 10.1002/gepi.21758 |
[33] |
Zou XL, Wang S, Wang LY, et al. Childhood obesity and risk of stroke: a Mendelian randomisation analysis. Front Genet, 2021; 12, 727475. doi: 10.3389/fgene.2021.727475 |
[34] |
Ding SW, Sun S, Ding R, et al. Association between exposure to air pollutants and the risk of inflammatory bowel diseases visits. Environ Sci Pollut Res Int, 2022; 29, 17645−54. doi: 10.1007/s11356-021-17009-0 |
[35] |
Michaux M, Chan JM, Bergmann L, et al. Spatial cluster mapping and environmental modeling in pediatric inflammatory bowel disease. World J Gastroenterol, 2023; 29, 3688−702. doi: 10.3748/wjg.v29.i23.3688 |
[36] |
Chan YL, Wang BM, Chen H, et al. Pulmonary inflammation induced by low-dose particulate matter exposure in mice. Am J Physiol Lung Cell Mol Physiol, 2019; 317, L424−30. doi: 10.1152/ajplung.00232.2019 |
[37] |
Xu MX, Ge CX, Qin YT, et al. Prolonged PM2.5 exposure elevates risk of oxidative stress-driven nonalcoholic fatty liver disease by triggering increase of dyslipidemia. Free Radic Biol Med, 2019; 130, 542−56. doi: 10.1016/j.freeradbiomed.2018.11.016 |
[38] |
Hong ZC, Zeng PJ, Zhuang GS, et al. Toxicological effects of artificial fine particulate matter in rats through induction of oxidative stress and inflammation. Tohoku J Exp Med, 2021; 255, 19−25. doi: 10.1620/tjem.255.19 |
[39] |
Wang Y, Xiong LL, Tang M. Toxicity of inhaled particulate matter on the central nervous system: neuroinflammation, neuropsychological effects and neurodegenerative disease. J Appl Toxicol, 2017; 37, 644−67. doi: 10.1002/jat.3451 |
[40] |
Liu KM, Hua SC, Song L. PM2.5 exposure and asthma development: the key role of oxidative stress. Oxid Med Cell Longev, 2022; 2022, 3618806. |
[41] |
Tian T, Wang ZL, Zhang JH. Pathomechanisms of oxidative stress in inflammatory bowel disease and potential antioxidant therapies. Oxid Med Cell Longev, 2017; 2017, 4535194. doi: 10.1155/2017/4535194 |
[42] |
Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res, 2011; 21, 103−15. doi: 10.1038/cr.2010.178 |
[43] |
Saez A, Herrero-Fernandez B, Gomez-Bris R, et al. Pathophysiology of inflammatory bowel disease: innate immune system. Int J Mol Sci, 2023; 24, 1526. doi: 10.3390/ijms24021526 |
[44] |
Salim SY, Kaplan GG, Madsen KL. Air pollution effects on the gut microbiota. Gut Microbes, 2014; 5, 215−9. doi: 10.4161/gmic.27251 |
[45] |
Kish L, Hotte N, Kaplan GG, et al. Environmental particulate matter induces murine intestinal inflammatory responses and alters the gut microbiome. PLoS One, 2013; 8, e62220. doi: 10.1371/journal.pone.0062220 |
[46] |
Salim SY, Jovel J, Wine E, et al. Exposure to ingested airborne pollutant particulate matter increases mucosal exposure to bacteria and induces early onset of inflammation in neonatal IL-10–deficient mice. Inflamm Bowel Dis, 2014; 20, 1129−38. doi: 10.1097/MIB.0000000000000066 |
[47] |
Wirsching J, Nagel G, Tsai MY, et al. Exposure to ambient air pollution and elevated blood levels of gamma-glutamyl transferase in a large Austrian cohort. Sci Total Environ, 2023; 883, 163658. doi: 10.1016/j.scitotenv.2023.163658 |
[48] |
Cappello M, Randazzo C, Bravatà I, et al. Liver function test abnormalities in patients with inflammatory bowel diseases: a hospital-based survey. Clin Med Insights Gastroenterol, 2014; 7, 25−31. |
[49] |
Li XB, Cui J, Yang HB, et al. Colonic injuries induced by inhalational exposure to particulate-matter air pollution. Adv Sci (Weinh), 2019; 6, 1900180. doi: 10.1002/advs.201900180 |
[50] |
Zhang YN, Li MY, Pu ZY, et al. Multi-omics data reveals the disturbance of glycerophospholipid metabolism and linoleic acid metabolism caused by disordered gut microbiota in PM2.5 gastrointestinal exposed rats. Ecotoxicol Environ Saf, 2023; 262, 115182. doi: 10.1016/j.ecoenv.2023.115182 |
[51] |
Mutlu EA, Engen PA, Soberanes S, et al. Particulate matter air pollution causes oxidant-mediated increase in gut permeability in mice. Part Fibre Toxicol, 2011; 8, 19. doi: 10.1186/1743-8977-8-19 |
[52] |
Costa LG, Cole TB, Dao K, et al. Effects of air pollution on the nervous system and its possible role in neurodevelopmental and neurodegenerative disorders. Pharmacol Ther, 2020; 210, 107523. doi: 10.1016/j.pharmthera.2020.107523 |
[53] |
Gao X, Koutrakis P, Coull B, et al. Short-term exposure to PM2.5 components and renal health: findings from the Veterans Affairs Normative Aging Study. J Hazard Mater, 2021; 420, 126557. doi: 10.1016/j.jhazmat.2021.126557 |
[54] |
Lu C, Wang L, Jiang Y, et al. Preconceptional, pregnant, and postnatal exposure to outdoor air pollution and indoor environmental factors: effects on childhood parasitic infections. Sci Total Environ, 2024; 912, 169234. doi: 10.1016/j.scitotenv.2023.169234 |
[55] |
Herrera-Luis E, Benke K, Volk H, et al. Gene-environment interactions in human health. Nat Rev Genet, 2024. |
[56] |
Virolainen SJ, VonHandorf A, Viel KCMF, et al. Gene-environment interactions and their impact on human health. Genes Immun, 2023; 24, 1−11. |
[57] |
Wang YT, Li HC, Huang J, et al. Short-term PM2.5 exposure and DNA methylation changes of circadian rhythm genes: evidence from two experimental studies. Environ Sci Technol, 2024; 58, 9991−10000. doi: 10.1021/acs.est.4c00108 |
[58] |
Gao X, Huang J, Cardenas A, et al. Short-term exposure of PM2.5 and epigenetic aging: a quasi-experimental study. Environ Sci Technol, 2022; 56, 14690−700. doi: 10.1021/acs.est.2c05534 |
[59] |
Li FR, Wu KY, Fan WD, et al. Long-term exposure to air pollution and risk of incident inflammatory bowel disease among middle and old aged adults. Ecotoxicol Environ Saf, 2022; 242, 113835. doi: 10.1016/j.ecoenv.2022.113835 |
[60] |
Burgess S, Davey Smith G, Davies NM, et al. Guidelines for performing Mendelian randomization investigations: update for summer 2023. Wellcome Open Res, 2019; 4, 186. doi: 10.12688/wellcomeopenres.15555.1 |