[1] World Health Organization. The top 10 causes of death. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death. [2025-04-15]
[2] Chen SM, Kuhn M, Prettner K, et al. The global economic burden of chronic obstructive pulmonary disease for 204 countries and territories in 2020-50: a health-augmented macroeconomic modelling study. Lancet Global Health, 2023; 11, e1183−93. doi:  10.1016/S2214-109X(23)00217-6
[3] Global Initiative for Chronic Obstructive Lung Disease. 2024 gold report - global initiative for chronic obstructive lung disease - GOLD. https://goldcopd.org/2024-gold-report/. [2024-06-21]
[4] Agustí A, Melén E, DeMeo DL, et al. Pathogenesis of chronic obstructive pulmonary disease: understanding the contributions of gene-environment interactions across the lifespan. Lancet Respir Med, 2022; 10, 512−24. doi:  10.1016/S2213-2600(21)00555-5
[5] Garcia-Aymerich J, Lange P, Benet M, et al. Regular physical activity modifies smoking-related lung function decline and reduces risk of chronic obstructive pulmonary disease: a population-based cohort study. Am J Respir Crit Care Med, 2007; 175, 458−63. doi:  10.1164/rccm.200607-896OC
[6] Spruit MA, Pitta F, McAuley E, et al. Pulmonary rehabilitation and physical activity in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2015; 192, 924−33. doi:  10.1164/rccm.201505-0929CI
[7] Perry AS, Dooley EE, Master H, et al. Physical activity over the lifecourse and cardiovascular disease. Circ Res, 2023; 132, 1725−40. doi:  10.1161/CIRCRESAHA.123.322121
[8] Sakornsakolpat P, Prokopenko D, Lamontagne M, et al. Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations. Nat Genet, 2019; 51, 494−505. doi:  10.1038/s41588-018-0342-2
[9] Cho MH, McDonald MLN, Zhou XB, et al. Risk loci for chronic obstructive pulmonary disease: a genome-wide association study and meta-analysis. Lancet Respir Med, 2014; 2, 214−25. doi:  10.1016/S2213-2600(14)70002-5
[10] Zhang PD, Zhang XR, Zhang A, et al. Associations of genetic risk and smoking with incident COPD. Eur Respir J, 2022; 59, 2101320. doi:  10.1183/13993003.01320-2021
[11] Hernandez-Pacheco N, Kilanowski A, Kumar A, et al. Exploring the genetics of airflow limitation in lung function across the lifespan - a polygenic risk score study. eClinicalMedicine, 2024; 75, 102731. doi:  10.1016/j.eclinm.2024.102731
[12] Bassett DR Jr. Commentary to accompany: international physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc, 2003; 35, 1396. doi:  10.1249/01.MSS.0000078923.96621.1D
[13] IPAQ. Guidelines for data processing and analysis of the international physical activity questionnaire (IPAQ). https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/ipaq_analysis.pdf. [2025-04-15]
[14] IPAQ. Guidelines for data processing and analysis of the international physical activity questionnaire (IPAQ). https://biobank.ndph.ox.ac.uk/showcase/refer.cgi?id=540. [2024-07-03]
[15] Bycroft C, Freeman C, Petkova D, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature, 2018; 562, 203−9. doi:  10.1038/s41586-018-0579-z
[16] Moll M, Sakornsakolpat P, Shrine N, et al. Chronic obstructive pulmonary disease and related phenotypes: polygenic risk scores in population-based and case-control cohorts. Lancet Respir Med, 2020; 8, 696−708. doi:  10.1016/S2213-2600(20)30101-6
[17] PLINK 2.0 alpha. https://www.cog-genomics.org/plink/2.0/. [2025-04-15]
[18] Zhang JZ, Xu HF, Qiao DD, et al. A polygenic risk score and age of diagnosis of COPD. Eur Respir J, 2022; 60, 2101954. doi:  10.1183/13993003.01954-2021
[19] O'Sullivan JW, Ashley EA, Elliott PM. Polygenic risk scores for the prediction of cardiometabolic disease. Eur Heart J, 2023; 44, 89−99. doi:  10.1093/eurheartj/ehac648
[20] Feng HL, Yang LL, Liang YY, et al. Associations of timing of physical activity with all-cause and cause-specific mortality in a prospective cohort study. Nat Commun, 2023; 14, 930. doi:  10.1038/s41467-023-36546-5
[21] Fan MY, Sun DJY, Zhou T, et al. Sleep patterns, genetic susceptibility, and incident cardiovascular disease: a prospective study of 385 292 UK biobank participants. Eur Heart J, 2020; 41, 1182−9. doi:  10.1093/eurheartj/ehz849
[22] Biobank. UK biobank: browse by category. https://biobank.ndph.ox.ac.uk/showcase/browse.cgi?id=22032&cd=data_field. [2024-07-06].
[23] Schafer JL. Multiple imputation: a primer. Stat Methods Med Res, 1999; 8, 3−15. doi:  10.1177/096228029900800102
[24] Austin PC. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivar Behav Res, 2011; 46, 399−424. doi:  10.1080/00273171.2011.568786
[25] Shrine N, Guyatt AL, Erzurumluoglu AM, et al. New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. Nat Genet, 2019; 51, 481−93. doi:  10.1038/s41588-018-0321-7
[26] Lee YH, Huang YP, Pan SL. Physical activity and the risk of chronic obstructive pulmonary disease: a longitudinal follow-up study in Taiwan. Am J Med Sci, 2024; 368, 55−60. doi:  10.1016/j.amjms.2024.04.006
[27] Chen L, Cai M, Li HT, et al. Risk/benefit tradeoff of habitual physical activity and air pollution on chronic pulmonary obstructive disease: findings from a large prospective cohort study. BMC Med, 2022; 20, 70. doi:  10.1186/s12916-022-02274-8
[28] Kim T, Kim H, Kong SG, et al. Association between regular moderate to vigorous physical activity initiation following COPD diagnosis and mortality: an emulated target trial using nationwide cohort data. Chest, 2024; 165, 84−94. doi:  10.1016/j.chest.2023.07.017
[29] Burtin C, Mohan D, Troosters T, et al. Objectively measured physical activity as a COPD clinical trial outcome. Chest, 2021; 160, 2080−100. doi:  10.1016/j.chest.2021.06.044
[30] Cordova-Rivera L, Gibson PG, Gardiner PA, et al. Physical activity associates with disease characteristics of severe asthma, bronchiectasis and COPD. Respirology, 2019; 24, 352−60. doi:  10.1111/resp.13428
[31] Stolz D. Chronic obstructive pulmonary disease risk: does genetics hold the answer? Lancet Respir Med, 2020; 8, 653-54.
[32] Yang QL, Ma TY, Cheung K, et al. Wearable device-measured bouted and sporadic physical activity patterns and incident COPD: a prospective cohort study from UK Biobank. Public Health, 2024; 237, 322−29. doi:  10.1016/j.puhe.2024.10.027
[33] AJMC. Exercise rehabilitation found to help alleviate symptoms of several chronic respiratory diseases. https://www.ajmc.com/view/exercise-rehabilitation-found-to-help-alleviate-symptoms-of-several-chronic-respiratory-diseases. [2025-04-15]
[34] Plaza-Diaz J, Izquierdo D, Torres-Martos Á, et al. Impact of physical activity and exercise on the epigenome in skeletal muscle and effects on systemic metabolism. Biomedicines, 2022; 10, 126. doi:  10.3390/biomedicines10010126
[35] Kaur G, Batra S. Regulation of DNA methylation signatures on NF-κB and STAT3 pathway genes and TET activity in cigarette smoke extract-challenged cells/COPD exacerbation model in vitro. Cell Biol Toxicol, 2020; 36, 459−80. doi:  10.1007/s10565-020-09522-8
[36] Christenson SA, Smith BM, Bafadhel M, et al. Chronic obstructive pulmonary disease. Lancet, 2022; 399, 2227−42. doi:  10.1016/S0140-6736(22)00470-6
[37] Celis-Morales CA, Lyall DM, Anderson J, et al. The association between physical activity and risk of mortality is modulated by grip strength and cardiorespiratory fitness: evidence from 498 135 UK-Biobank participants. Eur Heart J, 2017; 38, 116−22.
[38] Stamatakis E, Ahmadi MN, Friedenreich CM, et al. Vigorous intermittent lifestyle physical activity and cancer incidence among nonexercising adults: the UK Biobank accelerometry study. JAMA Oncol, 2023; 9, 1255−9. doi:  10.1001/jamaoncol.2023.1830
[39] Khurshid S, Al-Alusi MA, Churchill TW, et al. Accelerometer-derived "weekend warrior" physical activity and incident cardiovascular disease. JAMA, 2023; 330, 247−52. doi:  10.1001/jama.2023.10875
[40] Choi KW, Chen CY, Stein MB, et al. Assessment of bidirectional relationships between physical activity and depression among adults: a 2-sample mendelian randomization study. JAMA Psychiatry, 2019; 76, 399−408. doi:  10.1001/jamapsychiatry.2018.4175
[41] Xiang XY, Huang LH, Fang Y, et al. Physical activity and chronic obstructive pulmonary disease: a scoping review. BMC Pulm Med, 2022; 22, 301. doi:  10.1186/s12890-022-02099-4
[42] Watz H, Pitta F, Rochester CL, et al. An official European respiratory society statement on physical activity in COPD. Eur Respir J, 2014; 44, 1521−37. doi:  10.1183/09031936.00046814
[43] Jung MH, Yi SW, An SJ, et al. Association of physical activity and lower respiratory tract infection outcomes in patients with cardiovascular disease. J Am Heart Assoc, 2022; 11, e023775. doi:  10.1161/JAHA.121.023775
[44] American Lung Association. Exercise and lung health. https://www.lung.org/lung-health-diseases/wellness/exercise-and-lung-health. [2024-07-11]
[45] Soriano JB, Polverino F, Cosio BG. What is early COPD and why is it important? Eur Respir J, 2018; 52, 1801448.
[46] Martinez FJ, Han MK, Allinson JP, et al. At the root: defining and halting progression of early chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2018; 197, 1540−51. doi:  10.1164/rccm.201710-2028PP
[47] Kohansal R, Martinez-Camblor P, Agustí A, et al. The natural history of chronic airflow obstruction revisited: an analysis of the Framingham offspring cohort. Am J Respir Crit Care Med, 2009; 180, 3−10. doi:  10.1164/rccm.200901-0047OC
[48] Sanchez-Salcedo P, Divo M, Casanova C, et al. Disease progression in young patients with COPD: rethinking the Fletcher and Peto model. Eur Respir J, 2014; 44, 324−31. doi:  10.1183/09031936.00208613
[49] Adeloye D, Song PG, Zhu YJ, et al. Global, regional, and national prevalence of, and risk factors for, chronic obstructive pulmonary disease (COPD) in 2019: a systematic review and modelling analysis. Lancet Respir Med, 2022; 10, 447−58. doi:  10.1016/S2213-2600(21)00511-7
[50] Wang C, Xu JY, Yang L, et al. Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China pulmonary health [CPH] study): a national cross-sectional study. Lancet, 2018; 391, 1706-17.
[51] Maselli DJ, Bhatt SP, Anzueto A, et al. Clinical epidemiology of COPD: insights from 10 years of the COPDGene study. Chest, 2019; 156, 228−38. doi:  10.1016/j.chest.2019.04.135
[52] Ji HW, Gulati M, Huang TY, et al. Sex differences in association of physical activity with all-cause and cardiovascular mortality. J Am Coll Cardiol, 2024; 83, 783−93.
[53] Lee K, Lee H, Lee K, et al. Gender differences in pulmonary function, physical activity, and quality of life of patients with COPD based on data from the Korea National Health and Nutrition Examination Survey 2015 to 2019 from the Perspective of Pulmonary Rehabilitation. Medicine, 2022; 101, e31413. doi:  10.1097/MD.0000000000031413