[1] |
Yang Z, Cui QX, Zhou WZ, et al. Comparison of gene mutation spectrum of thalassemia in different regions of China and Southeast Asia. Mol Genet Genomic Med, 2019; 7, e680. |
[2] |
Shang X, Xu XM. Update in the genetics of thalassemia: what clinicians need to know. Best Pract Res Clin Obstet Gynaecol, 2017; 39, 3−15. doi: 10.1016/j.bpobgyn.2016.10.012 |
[3] |
Taher AT, Weatherall DJ, Cappellini MD. Thalassaemia. Lancet, 2018; 391, 155−67. doi: 10.1016/S0140-6736(17)31822-6 |
[4] |
Yang Z, Zhou WZ, Cui QX, et al. Gene spectrum analysis of thalassemia for people residing in northern China. BMC Med Genet, 2019; 20, 86. |
[5] |
Li B, Zhang XZ, Yin AH, et al. High prevalence of thalassemia in migrant populations in Guangdong Province, China. BMC Public Health, 2014; 14, 905. doi: 10.1186/1471-2458-14-905 |
[6] |
Lai KT, Huang GF, Su L, et al. The prevalence of thalassemia in mainland China: evidence from epidemiological surveys. Sci Rep, 2017; 7, 920. doi: 10.1038/s41598-017-00967-2 |
[7] |
Bhattacharya D. Asymptotic inference from multi-stage samples. J Econometr, 2005; 126, 145−71. doi: 10.1016/j.jeconom.2004.01.002 |
[8] |
Lin M, Zhong TY, Chen YG, et al. Molecular epidemiological characterization and health burden of thalassemia in Jiangxi Province, P. R. China. PLoS One, 2014; 9, e101505. doi: 10.1371/journal.pone.0101505 |
[9] |
Niu Q, Huang XB, An YF, et al. Genotype of thalassemia in Han Chinese and Tibetans in Sichuan province, China. J Sichuan Univ (Med Sci Ed), 2016; 47, 941−4. (In Chinese |
[10] |
Huang HL, Xu LP, Chen MH, et al. Molecular characterization of thalassemia and hemoglobinopathy in Southeastern China. Sci Rep, 2019; 9, 3493. doi: 10.1038/s41598-019-40089-5 |
[11] |
Zhu YW, Shen N, Wang X, et al. Alpha and beta-Thalassemia mutations in Hubei area of China. BMC Med Genet, 2020; 21, 6. |
[12] |
Tan ASC, Quah TC, Low PS, et al. A rapid and reliable 7-deletion multiplex polymerase chain reaction assay for α-thalassemia. Blood, 2001; 98, 250−1. doi: 10.1182/blood.V98.1.250 |
[13] |
He J, Song WH, Yang JL, et al. Next-generation sequencing improves thalassemia carrier screening among premarital adults in a high prevalence population: the Dai nationality, China. Genet Med, 2017; 19, 1022−31. doi: 10.1038/gim.2016.218 |
[14] |
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009; 25, 1754−60. doi: 10.1093/bioinformatics/btp324 |
[15] |
Zhang H, Li C, Li J, et al. Next‐generation sequencing improves molecular epidemiological characterization of thalassemia in Chenzhou region, P. R. China. J Clin Lab Anal, 2019; 33, e22845. doi: 10.1002/jcla.22845 |
[16] |
Kountouris P, Lederer CW, Fanis P, et al. IthaGenes: an interactive database for haemoglobin variations and epidemiology. PLoS One, 2014; 9, e103020. doi: 10.1371/journal.pone.0103020 |
[17] |
Wang W, Ma ESK, Chan AYY, et al. Single-tube multiplex-PCR screen for anti-3.7 and anti-4.2 alpha-globin gene triplications. Clin Chem, 2003; 49, 1679−82. doi: 10.1373/49.10.1679 |
[18] |
Shang X, Peng ZY, Ye YH, et al. Rapid targeted next-generation sequencing platform for molecular screening and clinical genotyping in subjects with hemoglobinopathies. eBioMedicine, 2017; 23, 150−9. doi: 10.1016/j.ebiom.2017.08.015 |
[19] |
He J, Zeng HL, Zhu L, et al. Prevalence and spectrum of thalassaemia in Changsha, Hunan province, China: discussion of an innovative screening strategy. J Genet, 2017; 96, 327−32. doi: 10.1007/s12041-017-0779-6 |
[20] |
Xie XM, Wu MY, Li DZ. Evidence of selection for the α-globin gene deletions and triplications in a southern Chinese Population. Hemoglobin, 2015; 39, 442−4. doi: 10.3109/03630269.2015.1072551 |
[21] |
Harteveld CL, Refaldi C, Cassinerio E, et al. Segmental duplications involving the α-globin gene cluster are causing β-thalassemia intermedia phenotypes in β-thalassemia heterozygous patients. Blood Cells, Mol, Dis, 2008; 40, 312−6. doi: 10.1016/j.bcmd.2007.11.006 |
[22] |
Zhao JH, Li J, Lai QH, et al. Combined use of gap-PCR and next-generation sequencing improves thalassaemia carrier screening among premarital adults in China. J Clin Pathol, 2020; 73, 488−92. doi: 10.1136/jclinpath-2019-206339 |
[23] |
Zhou BY, Wang YX, Shan XS, et al. Molecular spectrum of α-and β-thalassemia among young individuals of marriageable age in Guangdong Province, China. Biomed Environ Sci, 2021; 34, 824−9. |
[24] |
Heng G, Wang YX, Du MX, et al. Effectiveness of using mean corpuscular volume and mean corpuscular hemoglobin for beta-thalassemia carrier screening in the Guangdong population of China. Biomed Environ Sci, 2021; 34, 667−71. |
[25] |
Moosavi SF, Amirian A, Zarbakhsh B, et al. The carrier frequency of α-globin gene triplication in an Iranian population with normal or borderline hematological parameters. Hemoglobin, 2011; 35, 323−30. doi: 10.3109/03630269.2011.571527 |
[26] |
Ma SK, Au WY, Chan AY, et al. Clinical phenotype of triplicated α-globin genes and heterozygosity for β0-thalassemia in Chinese subjects. Int J Mol Med, 2001; 8, 171−5. |
[27] |
Hamid M, Keikhaei B, Galehdari H, et al. Alpha‐globin gene triplication and its effect in beta‐thalassemia carrier, sickle cell trait, and healthy individual. eJHaem, 2021; 2, 366−74. doi: 10.1002/jha2.262 |