[1] |
Kaplan GG. The global burden of IBD: from 2015 to 2025. Nat Rev Gastroenterol Hepatol, 2015; 12, 720−7. doi: 10.1038/nrgastro.2015.150 |
[2] |
Fearon ER. Molecular genetics of colorectal cancer. Ann Rev Pathol: Mech Dis, 2011; 6, 479−507. doi: 10.1146/annurev-pathol-011110-130235 |
[3] |
Menzies D, Ellis H. Intestinal obstruction from adhesions--how big is the problem? Ann Roy Coll Surg Engl, 1990; 72, 60-3. |
[4] |
Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies. Science, 2014; 345, 1247125. doi: 10.1126/science.1247125 |
[5] |
Kretzschmar K, Clevers H. Organoids: modeling development and the stem cell niche in a dish. Dev Cell, 2016; 38, 590−600. doi: 10.1016/j.devcel.2016.08.014 |
[6] |
Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 2009; 459, 262−5. doi: 10.1038/nature07935 |
[7] |
Mills RJ, Titmarsh DM, Koenig X, et al. Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proc Natl Acad Sci USA, 2017; 114, E8372−81. doi: 10.1073/pnas.1703109114 |
[8] |
Mills RJ, Parker BL, Quaife-Ryan GA, et al. Drug screening in human PSC-cardiac organoids identifies pro-proliferative compounds acting via the mevalonate pathway. Cell Stem Cell, 2019; 24, 895-907. e6. |
[9] |
Grenier K, Kao J, Diamandis P. Three-dimensional modeling of human neurodegeneration: brain organoids coming of age. Mol Psychiatry, 2020; 25, 254−74. doi: 10.1038/s41380-019-0500-7 |
[10] |
Lee CT, Bendriem RM, Wu WW, et al. 3D brain Organoids derived from pluripotent stem cells: promising experimental models for brain development and neurodegenerative disorders. J Biomed Sci, 2017; 24, 59. doi: 10.1186/s12929-017-0362-8 |
[11] |
Homan KA, Gupta N, Kroll KT, et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat Methods, 2019; 16, 255−62. doi: 10.1038/s41592-019-0325-y |
[12] |
Seidlitz T, Stange DE. Gastrointestinal cancer organoids-applications in basic and translational cancer research. Exp Mol Med, 2021; 53, 1459−70. doi: 10.1038/s12276-021-00654-3 |
[13] |
Lau HCH, Kranenburg O, Xiao HP, et al. Organoid models of gastrointestinal cancers in basic and translational research. Nat Rev Gastroenterol Hepatol, 2020; 17, 203−22. doi: 10.1038/s41575-019-0255-2 |
[14] |
Kim S, Lowe A, Dharmat R, et al. Generation, transcriptome profiling, and functional validation of cone-rich human retinal organoids. Proc Natl Acad Sci USA, 2019; 116, 10824−33. doi: 10.1073/pnas.1901572116 |
[15] |
Cowan CS, Renner M, De Gennaro M, et al. Cell types of the human retina and its organoids at single-cell resolution. Cell, 2020; 182, 1623-40. e34. |
[16] |
Shi RS, Radulovich N, Ng C, et al. Organoid cultures as preclinical models of non-small cell lung cancer. Clin Cancer Res, 2020; 26, 1162−74. doi: 10.1158/1078-0432.CCR-19-1376 |
[17] |
Wang JH, Li XL, Chen HY. Organoid models in lung regeneration and cancer. Cancer Lett, 2020; 475, 129−35. doi: 10.1016/j.canlet.2020.01.030 |
[18] |
Morizane R. Modelling diabetic vasculopathy with human vessel organoids. Nat Rev Nephrol, 2019; 15, 258−60. doi: 10.1038/s41581-019-0125-8 |
[19] |
Wimmer RA, Leopoldi A, Aichinger M, et al. Human blood vessel organoids as a model of diabetic vasculopathy. Nature, 2019; 565, 505−10. doi: 10.1038/s41586-018-0858-8 |
[20] |
Trisno SL, Philo KED, McCracken KW, et al. Esophageal organoids from human pluripotent stem cells delineate Sox2 functions during esophageal specification. Cell Stem Cell, 2018; 23, 501-15. e7. |
[21] |
Rosenbluth JM, Schackmann RCJ, Gray GK, et al. Organoid cultures from normal and cancer-prone human breast tissues preserve complex epithelial lineages. Nat Commun, 2020; 11, 1711. doi: 10.1038/s41467-020-15548-7 |
[22] |
Thompson WL, Takebe T. Generation of multi-cellular human liver organoids from pluripotent stem cells. Methods Cell Biol, 2020; 159, 47−68. |
[23] |
He CY, Lu D, Lin ZY, et al. Liver organoids, novel and promising modalities for exploring and repairing liver injury. Stem Cell Rev Rep, 2023; 19, 345−57. doi: 10.1007/s12015-022-10456-3 |
[24] |
Turco MY, Gardner L, Hughes J, et al. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium. Nat Cell Biol, 2017; 19, 568−77. doi: 10.1038/ncb3516 |
[25] |
Drost J, Clevers H. Organoids in cancer research. Nat Rev Cancer, 2018; 18, 407−18. doi: 10.1038/s41568-018-0007-6 |
[26] |
Ballard DH, Boyer CJ, Alexander JS. Organoids—preclinical models of human disease. N Engl J Med, 2019; 380, 1981−2. doi: 10.1056/NEJMc1903253 |
[27] |
Wallach TE, Bayrer JR. Intestinal organoids: new frontiers in the study of intestinal disease and physiology. J Pediatr Gastroenterol Nutr, 2017; 64, 180−5. doi: 10.1097/MPG.0000000000001411 |
[28] |
Heath JP. Epithelial cell migration in the intestine. Cell Biol Int, 1996; 20, 139−46. doi: 10.1006/cbir.1996.0018 |
[29] |
Barker N. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat Rev Mol Cell Biol, 2014; 15, 19−33. |
[30] |
Qi Z, Chen YG. Regulation of intestinal stem cell fate specification. Sci China Life Sci, 2015; 58, 570−8. doi: 10.1007/s11427-015-4859-7 |
[31] |
Barker N, van de Wetering M, Clevers H. The intestinal stem cell. Genes Dev, 2008; 22, 1856−64. doi: 10.1101/gad.1674008 |
[32] |
van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol, 2009; 71, 241−60. doi: 10.1146/annurev.physiol.010908.163145 |
[33] |
Bjerknes M, Cheng H. The stem-cell zone of the small intestinal epithelium. III. Evidence from columnar, enteroendocrine, and mucous cells in the adult mouse. Am J Anat, 1981; 160, 77−91. doi: 10.1002/aja.1001600107 |
[34] |
Potten CS, Booth C, Pritchard DM. The intestinal epithelial stem cell: the mucosal governor. Int J Exp Pathol, 1997; 78, 219−43. doi: 10.1046/j.1365-2613.1997.280362.x |
[35] |
Potten CS, Kovacs L, Hamilton E. Continuous labelling studies on mouse skin and intestine. Cell Tissue Kinet, 1974; 7, 271−83. |
[36] |
Cairns J. Mutation selection and the natural history of cancer. Nature, 1975; 255, 197−200. doi: 10.1038/255197a0 |
[37] |
Powell AE, Wang Y, Li YN, et al. The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell, 2012; 149, 146−58. doi: 10.1016/j.cell.2012.02.042 |
[38] |
Sangiorgi E, Capecchi MR. Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet, 2008; 40, 915−20. doi: 10.1038/ng.165 |
[39] |
Takeda N, Jain R, LeBoeuf MR, et al. Interconversion between intestinal stem cell populations in distinct niches. Science, 2011; 334, 1420−4. doi: 10.1126/science.1213214 |
[40] |
Barker N, van Oudenaarden A, Clevers H. Identifying the stem cell of the intestinal crypt: strategies and pitfalls. Cell Stem Cell, 2012; 11, 452−60. doi: 10.1016/j.stem.2012.09.009 |
[41] |
Barker N, van Es JH, Kuipers J, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature, 2007; 449, 1003−7. doi: 10.1038/nature06196 |
[42] |
Carmon KS, Gong X, Lin QS, et al. R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/β-catenin signaling. Proc Natl Acad Sci USA, 2011; 108, 11452−7. doi: 10.1073/pnas.1106083108 |
[43] |
Sato T, van Es JH, Snippert HJ, et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature, 2011; 469, 415−8. doi: 10.1038/nature09637 |
[44] |
Gehart H, Clevers H. Tales from the crypt: new insights into intestinal stem cells. Nat Rev Gastroenterol Hepatol, 2019; 16, 19−34. doi: 10.1038/s41575-018-0081-y |
[45] |
Boonekamp KE, Dayton TL, Clevers H. Intestinal organoids as tools for enriching and studying specific and rare cell types: advances and future directions. J Mol Cell Biol, 2020; 12, 562−8. doi: 10.1093/jmcb/mjaa034 |
[46] |
Gribble FM, Reimann F. Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nat Rev Endocrinol, 2019; 15, 226−37. doi: 10.1038/s41574-019-0168-8 |
[47] |
Rheinwald JG, Green H. Formation of a keratinizing epithelium in culture by a cloned cell line derived from a teratoma. Cell, 1975; 6, 317−30. doi: 10.1016/0092-8674(75)90183-X |
[48] |
Cao L, Gibson JD, Miyamoto S, et al. Intestinal lineage commitment of embryonic stem cells. Differentiation, 2011; 81, 1−10. doi: 10.1016/j.diff.2010.09.182 |
[49] |
Spence JR, Mayhew CN, Rankin SA, et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature, 2011; 470, 105−9. doi: 10.1038/nature09691 |
[50] |
Mustata RC, Vasile G, Fernandez-Vallone V, et al. Identification of Lgr5-independent spheroid-generating progenitors of the mouse fetal intestinal epithelium. Cell Rep, 2013; 5, 421−32. doi: 10.1016/j.celrep.2013.09.005 |
[51] |
Fordham RP, Yui S, Hannan NRF, et al. Transplantation of expanded fetal intestinal progenitors contributes to colon regeneration after injury. Cell Stem Cell, 2013; 13, 734−44. doi: 10.1016/j.stem.2013.09.015 |
[52] |
Levin DE, Barthel ER, Speer AL, et al. Human tissue-engineered small intestine forms from postnatal progenitor cells. J Pediatr Surg, 2013; 48, 129−37. doi: 10.1016/j.jpedsurg.2012.10.029 |
[53] |
Zachos NC, Kovbasnjuk O, Foulke-Abel J, et al. Human enteroids/colonoids and intestinal organoids functionally recapitulate normal intestinal physiology and pathophysiology. J Biol Chem, 2016; 291, 3759−66. doi: 10.1074/jbc.R114.635995 |
[54] |
Dedhia PH, Bertaux-Skeirik N, Zavros Y, et al. Organoid models of human gastrointestinal development and disease. Gastroenterology, 2016; 150, 1098−112. doi: 10.1053/j.gastro.2015.12.042 |
[55] |
Ootani A, Li XN, Sangiorgi E, et al. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med, 2009; 15, 701−6. doi: 10.1038/nm.1951 |
[56] |
Fair KL, Colquhoun J, Hannan NRF. Intestinal organoids for modelling intestinal development and disease. Philos Trans Roy Soc B Biol Sci, 2018; 373, 20170217. doi: 10.1098/rstb.2017.0217 |
[57] |
Fujii M, Matano M, Toshimitsu K, et al. Human intestinal organoids maintain self-renewal capacity and cellular diversity in niche-inspired culture condition. Cell Stem Cell, 2018; 23, 787-93. e6. |
[58] |
Sato T, Stange DE, Ferrante M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology, 2011; 141, 1762−72. doi: 10.1053/j.gastro.2011.07.050 |
[59] |
Jung P, Sato T, Merlos-Suárez A, et al. Isolation and in vitro expansion of human colonic stem cells. Nat Med, 2011; 17, 1225−7. doi: 10.1038/nm.2470 |
[60] |
McCracken KW, Howell JC, Wells JM, et al. Generating human intestinal tissue from pluripotent stem cells in vitro. Nat Protoc, 2011; 6, 1920−8. doi: 10.1038/nprot.2011.410 |
[61] |
Sinagoga KL, Wells JM. Generating human intestinal tissues from pluripotent stem cells to study development and disease. EMBO J, 2015; 34, 1149−63. doi: 10.15252/embj.201490686 |
[62] |
Múnera JO, Wells JM. Generation of gastrointestinal organoids from human pluripotent stem cells. In: Tsuji T. Organ Regeneration: 3D Stem Cell Culture & Manipulation. Humana Press. 2017, 167-77. |
[63] |
Watson CL, Mahe MM, Múnera J, et al. An in vivo model of human small intestine using pluripotent stem cells. Nat Med, 2014; 20, 1310−4. doi: 10.1038/nm.3737 |
[64] |
Hughes CS, Postovit LM, Lajoie GA. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics, 2010; 10, 1886−90. doi: 10.1002/pmic.200900758 |
[65] |
Kozlowski MT, Crook CJ, Ku HT. Towards organoid culture without Matrigel. Commun Biol, 2021; 4, 1387. doi: 10.1038/s42003-021-02910-8 |
[66] |
Kim S, Min S, Choi YS, et al. Tissue extracellular matrix hydrogels as alternatives to Matrigel for culturing gastrointestinal organoids. Nat Commun, 2022; 13, 1692. doi: 10.1038/s41467-022-29279-4 |
[67] |
Kaur S, Kaur I, Rawal P, et al. Non-matrigel scaffolds for organoid cultures. Cancer Lett, 2021; 504, 58−66. doi: 10.1016/j.canlet.2021.01.025 |
[68] |
Shaffiey SA, Jia HP, Keane T, et al. Intestinal stem cell growth and differentiation on a tubular scaffold with evaluation in small and large animals. Regen Med, 2016; 11, 45−61. doi: 10.2217/rme.15.70 |
[69] |
Cruz-Acuña R, Quirós M, Farkas AE, et al. Synthetic hydrogels for human intestinal organoid generation and colonic wound repair. Nat Cell Biol, 2017; 19, 1326−35. doi: 10.1038/ncb3632 |
[70] |
Wang YL, Gunasekara DB, Reed MI, et al. A microengineered collagen scaffold for generating a polarized crypt-villus architecture of human small intestinal epithelium. Biomaterials, 2017; 128, 44−55. doi: 10.1016/j.biomaterials.2017.03.005 |
[71] |
Workman MJ, Gleeson JP, Troisi EJ, et al. Enhanced utilization of induced pluripotent stem cell-derived human intestinal organoids using microengineered chips. Cell Mol Gastroenterol Hepatol, 2018; 5, 669-77. e2. |
[72] |
Giobbe GG, Crowley C, Luni C, et al. Extracellular matrix hydrogel derived from decellularized tissues enables endodermal organoid culture. Nat Commun, 2019; 10, 5658. doi: 10.1038/s41467-019-13605-4 |
[73] |
Hunt DR, Klett KC, Mascharak S, et al. Engineered matrices enable the culture of human patient-derived intestinal organoids. Adv Sci, 2021; 8, 2004705. doi: 10.1002/advs.202004705 |
[74] |
Ma WP, Zheng Y, Yang GZ, et al. A bioactive calcium silicate nanowire-containing hydrogel for organoid formation and functionalization. Mater Horiz, 2024; 11, 2957−73. doi: 10.1039/D4MH00228H |
[75] |
Verissimo CS, Overmeer RM, Ponsioen B, et al. Targeting mutant RAS in patient-derived colorectal cancer organoids by combinatorial drug screening. eLife, 2016; 5, e18489. doi: 10.7554/eLife.18489 |
[76] |
Drost J, van Jaarsveld RH, Ponsioen B, et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature, 2015; 521, 43−7. doi: 10.1038/nature14415 |
[77] |
Fujii M, Shimokawa M, Date S, et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell, 2016; 18, 827−38. doi: 10.1016/j.stem.2016.04.003 |
[78] |
van de Wetering M, Francies HE, Francis JM, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell, 2015; 161, 933−45. doi: 10.1016/j.cell.2015.03.053 |
[79] |
Zietek T, Rath E, Haller D, et al. Intestinal organoids for assessing nutrient transport, sensing and incretin secretion. Sci Rep, 2015; 5, 16831. doi: 10.1038/srep16831 |
[80] |
Nigro G, Hanson M, Fevre C, et al. Intestinal organoids as a novel tool to study microbes-epithelium interactions. In: Turksen K. Organoids: Stem Cells, Structure, and Function. Humana. 2019, 183-94. |
[81] |
Artegiani B, Hendriks D, Beumer J, et al. Fast and efficient generation of knock-in human organoids using homology-independent CRISPR-Cas9 precision genome editing. Nat Cell Biol, 2020; 22, 321−31. doi: 10.1038/s41556-020-0472-5 |
[82] |
Yui S, Nakamura T, Sato T, et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5⁺ stem cell. Nat Med, 2012; 18, 618−23. doi: 10.1038/nm.2695 |
[83] |
Sugimoto S, Kobayashi E, Fujii M, et al. An organoid-based organ-repurposing approach to treat short bowel syndrome. Nature, 2021; 592, 99−104. |
[84] |
Nikolaev M, Mitrofanova O, Broguiere N, et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature, 2020; 585, 574−8. doi: 10.1038/s41586-020-2724-8 |
[85] |
Yun C, Kim SH, Kim KM, et al. Advantages of using 3D spheroid culture systems in toxicological and pharmacological assessment for osteogenesis research. Int J Mol Sci, 2024; 25, 2512. doi: 10.3390/ijms25052512 |
[86] |
Xiang T, Wang J, Li H. Current applications of intestinal organoids: a review. Stem Cell Res Ther, 2024; 15, 155. doi: 10.1186/s13287-024-03768-3 |
[87] |
Kar SK, van der Hee B, Loonen LMP, et al. Effects of undigested protein-rich ingredients on polarised small intestinal organoid monolayers. J Anim Sci Biotechnol, 2020; 11, 51. doi: 10.1186/s40104-020-00443-4 |
[88] |
Sittipo P, Kim HK, Han J, et al. Vitamin D3 suppresses intestinal epithelial stemness via ER stress induction in intestinal organoids. Stem Cell Res Ther, 2021; 12, 285. doi: 10.1186/s13287-021-02361-2 |
[89] |
Park JH, Kotani T, Konno T, et al. Promotion of intestinal epithelial cell turnover by commensal bacteria: role of short-chain fatty acids. PLoS One, 2016; 11, e0156334. doi: 10.1371/journal.pone.0156334 |
[90] |
Hasan NM, Johnson KF, Yin JY, et al. Intestinal stem cell-derived enteroids from morbidly obese patients preserve obesity-related phenotypes: elevated glucose absorption and gluconeogenesis. Mol Metab, 2021; 44, 101129. doi: 10.1016/j.molmet.2020.101129 |
[91] |
Seiwert N, Wecklein S, Demuth P, et al. Heme oxygenase 1 protects human colonocytes against ROS formation, oxidative DNA damage and cytotoxicity induced by heme iron, but not inorganic iron. Cell Death Dis, 2020; 11, 787. doi: 10.1038/s41419-020-02950-8 |
[92] |
Endres TM, Konstan MW. What is cystic fibrosis? JAMA, 2022; 327, 191. |
[93] |
Ooi CY, Durie PR. Cystic fibrosis from the gastroenterologist's perspective. Nat Rev Gastroenterol Hepatol, 2016; 13, 175−85. doi: 10.1038/nrgastro.2015.226 |
[94] |
Dekkers JF, van der Ent CK, Beekman JM. Novel opportunities for CFTR-targeting drug development using organoids. Rare Dis, 2013; 1, e27112. doi: 10.4161/rdis.27112 |
[95] |
Schwank G, Koo BK, Sasselli V, et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell stem cell, 2013; 13, 653−8. doi: 10.1016/j.stem.2013.11.002 |
[96] |
Bigorgne AE, Farin HF, Lemoine R, et al. TTC7A mutations disrupt intestinal epithelial apicobasal polarity. J Clin Invest, 2014; 124, 328−37. doi: 10.1172/JCI71471 |
[97] |
Rodansky ES, Johnson LA, Huang S, et al. Intestinal organoids: a model of intestinal fibrosis for evaluating anti-fibrotic drugs. Exp Mol Pathol, 2015; 98, 346−51. doi: 10.1016/j.yexmp.2015.03.033 |
[98] |
Chan MCW, Cheung SKC, Mohammad KN, et al. Use of human intestinal enteroids to detect human norovirus infectivity. Emerg Infect Dis, 2019; 25, 1730−5. doi: 10.3201/eid2509.190205 |
[99] |
Pradhan S, Karve SS, Weiss AA, et al. Tissue responses to shiga toxin in human intestinal organoids. Cell Mol Gastroenterol Hepatol, 2020; 10, 171−90. doi: 10.1016/j.jcmgh.2020.02.006 |
[100] |
Forbester JL, Goulding D, Vallier L, et al. Interaction of Salmonella enterica serovar typhimurium with intestinal organoids derived from human induced pluripotent stem cells. Infect Immun, 2015; 83, 2926−34. doi: 10.1128/IAI.00161-15 |
[101] |
Foulke-Abel J, In J, Kovbasnjuk O, et al. Human enteroids as an ex-vivo model of host-pathogen interactions in the gastrointestinal tract. Exp Biol Med, 2014; 239, 1124−34. doi: 10.1177/1535370214529398 |
[102] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021; 71, 209−49. doi: 10.3322/caac.21660 |
[103] |
Li XS, Liang WZ, Yu CW, et al. Potential therapeutic strategies for quercetin targeting critical pathological mechanisms associated with colon adenocarcinoma and COVID-19. Front Pharmacol, 2022; 13, 988153. doi: 10.3389/fphar.2022.988153 |
[104] |
Liang WZ, Li XS, Yao Y, et al. Puerarin: a potential therapeutic for colon adenocarcinoma (COAD) patients suffering from SARS-CoV-2 infection. Front Pharmacol, 2022; 13, 921517. doi: 10.3389/fphar.2022.921517 |
[105] |
Liang WZ, Yi HY, Mao CY, et al. Research progress of RNA methylation modification in colorectal cancer. Front Pharmacol, 2022; 13, 903699. doi: 10.3389/fphar.2022.903699 |
[106] |
Roper J, Tammela T, Cetinbas NM, et al. In vivo genome editing and organoid transplantation models of colorectal cancer and metastasis. Nat Biotechnol, 2017; 35, 569−76. doi: 10.1038/nbt.3836 |
[107] |
O'Rourke KP, Loizou E, Livshits G, et al. Transplantation of engineered organoids enables rapid generation of metastatic mouse models of colorectal cancer. Nat Biotechnol, 2017; 35, 577−82. doi: 10.1038/nbt.3837 |
[108] |
Matano M, Date S, Shimokawa M, et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med, 2015; 21, 256−62. doi: 10.1038/nm.3802 |
[109] |
Fessler E, Drost J, van Hooff SR, et al. TGFβ signaling directs serrated adenomas to the mesenchymal colorectal cancer subtype. EMBO Mol Med, 2016; 8, 745−60. doi: 10.15252/emmm.201606184 |
[110] |
Schütte M, Risch T, Abdavi-Azar N, et al. Molecular dissection of colorectal cancer in pre-clinical models identifies biomarkers predicting sensitivity to EGFR inhibitors. Nat Commun, 2017; 8, 14262. doi: 10.1038/ncomms14262 |
[111] |
Kondo J, Ekawa T, Endo H, et al. High-throughput screening in colorectal cancer tissue-originated spheroids. Cancer Sci, 2019; 110, 345−55. doi: 10.1111/cas.13843 |
[112] |
Xinaris C, Brizi V, Remuzzi G. Organoid models and applications in biomedical research. Nephron, 2015; 130, 191−9. doi: 10.1159/000433566 |
[113] |
Pauli C, Hopkins BD, Prandi D, et al. Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov, 2017; 7, 462−77. doi: 10.1158/2159-8290.CD-16-1154 |
[114] |
Shen XH, Zhang YC, Xu ZQ, et al. KLF5 inhibition overcomes oxaliplatin resistance in patient-derived colorectal cancer organoids by restoring apoptotic response. Cell Death Dis, 2022; 13, 303. doi: 10.1038/s41419-022-04773-1 |
[115] |
Lukonin I, Serra D, Challet Meylan L, et al. Phenotypic landscape of intestinal organoid regeneration. Nature, 2020; 586, 275−80. doi: 10.1038/s41586-020-2776-9 |
[116] |
Norkin M, Ordóñez-Morán P, Huelsken J. High-content, targeted RNA-seq screening in organoids for drug discovery in colorectal cancer. Cell Rep, 2021; 35, 109026. doi: 10.1016/j.celrep.2021.109026 |
[117] |
Luo ZG, Wang BT, Luo FF, et al. Establishment of a large-scale patient-derived high-risk colorectal adenoma organoid biobank for high-throughput and high-content drug screening. BMC Med, 2023; 21, 336. doi: 10.1186/s12916-023-03034-y |
[118] |
Lin L, DeMartino J, Wang DS, et al. Unbiased transcription factor CRISPR screen identifies ZNF800 as master repressor of enteroendocrine differentiation. Science, 2023; 382, 451−8. doi: 10.1126/science.adi2246 |
[119] |
Mertens S, Huismans MA, Verissimo CS, et al. Drug-repurposing screen on patient-derived organoids identifies therapy-induced vulnerability in KRAS-mutant colon cancer. Cell Rep, 2023; 42, 112324. doi: 10.1016/j.celrep.2023.112324 |
[120] |
Mao YN, Wang W, Yang JW, et al. Drug repurposing screening and mechanism analysis based on human colorectal cancer organoids. Protein Cell, 2024; 15, 285−304. doi: 10.1093/procel/pwad038 |
[121] |
Grabinger T, Luks L, Kostadinova F, et al. Ex vivo culture of intestinal crypt organoids as a model system for assessing cell death induction in intestinal epithelial cells and enteropathy. Cell Death Dis, 2014; 5, e1228. doi: 10.1038/cddis.2014.183 |
[122] |
Takahashi Y, Noguchi M, Inoue Y, et al. Organoid-derived intestinal epithelial cells are a suitable model for preclinical toxicology and pharmacokinetic studies. iScience, 2022; 25, 104542. doi: 10.1016/j.isci.2022.104542 |
[123] |
Harter MF, Recaldin T, Gerard R, et al. Analysis of off-tumour toxicities of T-cell-engaging bispecific antibodies via donor-matched intestinal organoids and tumouroids. Nat Biomed Eng, 2024; 8, 345−60. |
[124] |
Brody H. Colorectal cancer. Nature, 2015; 521, S1. doi: 10.1038/521S1a |
[125] |
Weeber F, van de Wetering M, Hoogstraat M, et al. Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases. Proc Natl Acad Sci USA, 2015; 112, 13308−11. doi: 10.1073/pnas.1516689112 |
[126] |
Saini A. Cystic fibrosis patients benefit from mini guts. Cell Stem Cell, 2016; 19, 425−7. doi: 10.1016/j.stem.2016.09.001 |
[127] |
Fajac I, Burgel PR, Martin C. New drugs, new challenges in cystic fibrosis care. Eur Respir Rev, 2024; 33, 240045. doi: 10.1183/16000617.0045-2024 |
[128] |
Furstova E, Dousova T, Beranek J, et al. Response to elexacaftor/tezacaftor/ivacaftor in intestinal organoids derived from people with cystic fibrosis. J Cyst Fibros, 2022; 21, 243−5. doi: 10.1016/j.jcf.2021.07.006 |
[129] |
Vlachogiannis G, Hedayat S, Vatsiou A, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science, 2018; 359, 920−6. doi: 10.1126/science.aao2774 |
[130] |
Narasimhan V, Wright JA, Churchill M, et al. Medium-throughput drug screening of patient-derived organoids from colorectal peritoneal metastases to direct personalized therapy. Clin Cancer Res, 2020; 26, 3662−70. doi: 10.1158/1078-0432.CCR-20-0073 |
[131] |
Clevers H. Modeling development and disease with organoids. Cell, 2016; 165, 1586−97. doi: 10.1016/j.cell.2016.05.082 |
[132] |
Quintard C, Tubbs E, Jonsson G, et al. A microfluidic platform integrating functional vascularized organoids-on-chip. Nat Commun, 2024; 15, 1452. doi: 10.1038/s41467-024-45710-4 |
[133] |
He GW, Lin L, DeMartino J, et al. Optimized human intestinal organoid model reveals interleukin-22-dependency of paneth cell formation. Cell Stem Cell, 2022; 29, 1718−20. doi: 10.1016/j.stem.2022.11.001 |
[134] |
Leushacke M, Barker N. Ex vivo culture of the intestinal epithelium: strategies and applications. Gut, 2014; 63, 1345−54. doi: 10.1136/gutjnl-2014-307204 |
[135] |
Yin XL, Farin HF, van Es JH, et al. Niche-independent high-purity cultures of Lgr5+ intestinal stem cells and their progeny. Nat Methods, 2014; 11, 106−12. doi: 10.1038/nmeth.2737 |
[136] |
Bartfeld S, Bayram T, van de Wetering M, et al. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology, 2015; 148, 126-36. e6. |
[137] |
Almeqdadi M, Mana MD, Roper J, et al. Gut organoids: mini-tissues in culture to study intestinal physiology and disease. Am J Physiol Cell Physiol, 2019; 317, C405−19. doi: 10.1152/ajpcell.00300.2017 |
[138] |
Hibiya S, Tsuchiya K, Hayashi R, et al. Long-term inflammation transforms intestinal epithelial cells of colonic organoids. J Crohns Colitis, 2017; 11, 621−30. |
[139] |
Sarvestani SK, Signs S, Hu B, et al. Induced organoids derived from patients with ulcerative colitis recapitulate colitic reactivity. Nat Commun, 2021; 12, 262. doi: 10.1038/s41467-020-20351-5 |
[140] |
Fan YY, Davidson LA, Chapkin RS. Murine colonic organoid culture system and downstream assay applications. In: Turksen K. Organoids: Stem Cells, Structure, and Function. Humana. 2019, 171-81. |
[141] |
Sato T, Clevers H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science, 2013; 340, 1190−4. doi: 10.1126/science.1234852 |