[1] Kaplan GG. The global burden of IBD: from 2015 to 2025. Nat Rev Gastroenterol Hepatol, 2015; 12, 720−7. doi:  10.1038/nrgastro.2015.150
[2] Fearon ER. Molecular genetics of colorectal cancer. Ann Rev Pathol: Mech Dis, 2011; 6, 479−507. doi:  10.1146/annurev-pathol-011110-130235
[3] Menzies D, Ellis H. Intestinal obstruction from adhesions--how big is the problem? Ann Roy Coll Surg Engl, 1990; 72, 60-3.
[4] Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies. Science, 2014; 345, 1247125. doi:  10.1126/science.1247125
[5] Kretzschmar K, Clevers H. Organoids: modeling development and the stem cell niche in a dish. Dev Cell, 2016; 38, 590−600. doi:  10.1016/j.devcel.2016.08.014
[6] Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 2009; 459, 262−5. doi:  10.1038/nature07935
[7] Mills RJ, Titmarsh DM, Koenig X, et al. Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proc Natl Acad Sci USA, 2017; 114, E8372−81. doi:  10.1073/pnas.1703109114
[8] Mills RJ, Parker BL, Quaife-Ryan GA, et al. Drug screening in human PSC-cardiac organoids identifies pro-proliferative compounds acting via the mevalonate pathway. Cell Stem Cell, 2019; 24, 895-907. e6.
[9] Grenier K, Kao J, Diamandis P. Three-dimensional modeling of human neurodegeneration: brain organoids coming of age. Mol Psychiatry, 2020; 25, 254−74. doi:  10.1038/s41380-019-0500-7
[10] Lee CT, Bendriem RM, Wu WW, et al. 3D brain Organoids derived from pluripotent stem cells: promising experimental models for brain development and neurodegenerative disorders. J Biomed Sci, 2017; 24, 59. doi:  10.1186/s12929-017-0362-8
[11] Homan KA, Gupta N, Kroll KT, et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat Methods, 2019; 16, 255−62. doi:  10.1038/s41592-019-0325-y
[12] Seidlitz T, Stange DE. Gastrointestinal cancer organoids-applications in basic and translational cancer research. Exp Mol Med, 2021; 53, 1459−70. doi:  10.1038/s12276-021-00654-3
[13] Lau HCH, Kranenburg O, Xiao HP, et al. Organoid models of gastrointestinal cancers in basic and translational research. Nat Rev Gastroenterol Hepatol, 2020; 17, 203−22. doi:  10.1038/s41575-019-0255-2
[14] Kim S, Lowe A, Dharmat R, et al. Generation, transcriptome profiling, and functional validation of cone-rich human retinal organoids. Proc Natl Acad Sci USA, 2019; 116, 10824−33. doi:  10.1073/pnas.1901572116
[15] Cowan CS, Renner M, De Gennaro M, et al. Cell types of the human retina and its organoids at single-cell resolution. Cell, 2020; 182, 1623-40. e34.
[16] Shi RS, Radulovich N, Ng C, et al. Organoid cultures as preclinical models of non-small cell lung cancer. Clin Cancer Res, 2020; 26, 1162−74. doi:  10.1158/1078-0432.CCR-19-1376
[17] Wang JH, Li XL, Chen HY. Organoid models in lung regeneration and cancer. Cancer Lett, 2020; 475, 129−35. doi:  10.1016/j.canlet.2020.01.030
[18] Morizane R. Modelling diabetic vasculopathy with human vessel organoids. Nat Rev Nephrol, 2019; 15, 258−60. doi:  10.1038/s41581-019-0125-8
[19] Wimmer RA, Leopoldi A, Aichinger M, et al. Human blood vessel organoids as a model of diabetic vasculopathy. Nature, 2019; 565, 505−10. doi:  10.1038/s41586-018-0858-8
[20] Trisno SL, Philo KED, McCracken KW, et al. Esophageal organoids from human pluripotent stem cells delineate Sox2 functions during esophageal specification. Cell Stem Cell, 2018; 23, 501-15. e7.
[21] Rosenbluth JM, Schackmann RCJ, Gray GK, et al. Organoid cultures from normal and cancer-prone human breast tissues preserve complex epithelial lineages. Nat Commun, 2020; 11, 1711. doi:  10.1038/s41467-020-15548-7
[22] Thompson WL, Takebe T. Generation of multi-cellular human liver organoids from pluripotent stem cells. Methods Cell Biol, 2020; 159, 47−68.
[23] He CY, Lu D, Lin ZY, et al. Liver organoids, novel and promising modalities for exploring and repairing liver injury. Stem Cell Rev Rep, 2023; 19, 345−57. doi:  10.1007/s12015-022-10456-3
[24] Turco MY, Gardner L, Hughes J, et al. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium. Nat Cell Biol, 2017; 19, 568−77. doi:  10.1038/ncb3516
[25] Drost J, Clevers H. Organoids in cancer research. Nat Rev Cancer, 2018; 18, 407−18. doi:  10.1038/s41568-018-0007-6
[26] Ballard DH, Boyer CJ, Alexander JS. Organoids—preclinical models of human disease. N Engl J Med, 2019; 380, 1981−2. doi:  10.1056/NEJMc1903253
[27] Wallach TE, Bayrer JR. Intestinal organoids: new frontiers in the study of intestinal disease and physiology. J Pediatr Gastroenterol Nutr, 2017; 64, 180−5. doi:  10.1097/MPG.0000000000001411
[28] Heath JP. Epithelial cell migration in the intestine. Cell Biol Int, 1996; 20, 139−46. doi:  10.1006/cbir.1996.0018
[29] Barker N. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat Rev Mol Cell Biol, 2014; 15, 19−33.
[30] Qi Z, Chen YG. Regulation of intestinal stem cell fate specification. Sci China Life Sci, 2015; 58, 570−8. doi:  10.1007/s11427-015-4859-7
[31] Barker N, van de Wetering M, Clevers H. The intestinal stem cell. Genes Dev, 2008; 22, 1856−64. doi:  10.1101/gad.1674008
[32] van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol, 2009; 71, 241−60. doi:  10.1146/annurev.physiol.010908.163145
[33] Bjerknes M, Cheng H. The stem-cell zone of the small intestinal epithelium. III. Evidence from columnar, enteroendocrine, and mucous cells in the adult mouse. Am J Anat, 1981; 160, 77−91. doi:  10.1002/aja.1001600107
[34] Potten CS, Booth C, Pritchard DM. The intestinal epithelial stem cell: the mucosal governor. Int J Exp Pathol, 1997; 78, 219−43. doi:  10.1046/j.1365-2613.1997.280362.x
[35] Potten CS, Kovacs L, Hamilton E. Continuous labelling studies on mouse skin and intestine. Cell Tissue Kinet, 1974; 7, 271−83.
[36] Cairns J. Mutation selection and the natural history of cancer. Nature, 1975; 255, 197−200. doi:  10.1038/255197a0
[37] Powell AE, Wang Y, Li YN, et al. The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell, 2012; 149, 146−58. doi:  10.1016/j.cell.2012.02.042
[38] Sangiorgi E, Capecchi MR. Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet, 2008; 40, 915−20. doi:  10.1038/ng.165
[39] Takeda N, Jain R, LeBoeuf MR, et al. Interconversion between intestinal stem cell populations in distinct niches. Science, 2011; 334, 1420−4. doi:  10.1126/science.1213214
[40] Barker N, van Oudenaarden A, Clevers H. Identifying the stem cell of the intestinal crypt: strategies and pitfalls. Cell Stem Cell, 2012; 11, 452−60. doi:  10.1016/j.stem.2012.09.009
[41] Barker N, van Es JH, Kuipers J, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature, 2007; 449, 1003−7. doi:  10.1038/nature06196
[42] Carmon KS, Gong X, Lin QS, et al. R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/β-catenin signaling. Proc Natl Acad Sci USA, 2011; 108, 11452−7. doi:  10.1073/pnas.1106083108
[43] Sato T, van Es JH, Snippert HJ, et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature, 2011; 469, 415−8. doi:  10.1038/nature09637
[44] Gehart H, Clevers H. Tales from the crypt: new insights into intestinal stem cells. Nat Rev Gastroenterol Hepatol, 2019; 16, 19−34. doi:  10.1038/s41575-018-0081-y
[45] Boonekamp KE, Dayton TL, Clevers H. Intestinal organoids as tools for enriching and studying specific and rare cell types: advances and future directions. J Mol Cell Biol, 2020; 12, 562−8. doi:  10.1093/jmcb/mjaa034
[46] Gribble FM, Reimann F. Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nat Rev Endocrinol, 2019; 15, 226−37. doi:  10.1038/s41574-019-0168-8
[47] Rheinwald JG, Green H. Formation of a keratinizing epithelium in culture by a cloned cell line derived from a teratoma. Cell, 1975; 6, 317−30. doi:  10.1016/0092-8674(75)90183-X
[48] Cao L, Gibson JD, Miyamoto S, et al. Intestinal lineage commitment of embryonic stem cells. Differentiation, 2011; 81, 1−10. doi:  10.1016/j.diff.2010.09.182
[49] Spence JR, Mayhew CN, Rankin SA, et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature, 2011; 470, 105−9. doi:  10.1038/nature09691
[50] Mustata RC, Vasile G, Fernandez-Vallone V, et al. Identification of Lgr5-independent spheroid-generating progenitors of the mouse fetal intestinal epithelium. Cell Rep, 2013; 5, 421−32. doi:  10.1016/j.celrep.2013.09.005
[51] Fordham RP, Yui S, Hannan NRF, et al. Transplantation of expanded fetal intestinal progenitors contributes to colon regeneration after injury. Cell Stem Cell, 2013; 13, 734−44. doi:  10.1016/j.stem.2013.09.015
[52] Levin DE, Barthel ER, Speer AL, et al. Human tissue-engineered small intestine forms from postnatal progenitor cells. J Pediatr Surg, 2013; 48, 129−37. doi:  10.1016/j.jpedsurg.2012.10.029
[53] Zachos NC, Kovbasnjuk O, Foulke-Abel J, et al. Human enteroids/colonoids and intestinal organoids functionally recapitulate normal intestinal physiology and pathophysiology. J Biol Chem, 2016; 291, 3759−66. doi:  10.1074/jbc.R114.635995
[54] Dedhia PH, Bertaux-Skeirik N, Zavros Y, et al. Organoid models of human gastrointestinal development and disease. Gastroenterology, 2016; 150, 1098−112. doi:  10.1053/j.gastro.2015.12.042
[55] Ootani A, Li XN, Sangiorgi E, et al. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med, 2009; 15, 701−6. doi:  10.1038/nm.1951
[56] Fair KL, Colquhoun J, Hannan NRF. Intestinal organoids for modelling intestinal development and disease. Philos Trans Roy Soc B Biol Sci, 2018; 373, 20170217. doi:  10.1098/rstb.2017.0217
[57] Fujii M, Matano M, Toshimitsu K, et al. Human intestinal organoids maintain self-renewal capacity and cellular diversity in niche-inspired culture condition. Cell Stem Cell, 2018; 23, 787-93. e6.
[58] Sato T, Stange DE, Ferrante M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology, 2011; 141, 1762−72. doi:  10.1053/j.gastro.2011.07.050
[59] Jung P, Sato T, Merlos-Suárez A, et al. Isolation and in vitro expansion of human colonic stem cells. Nat Med, 2011; 17, 1225−7. doi:  10.1038/nm.2470
[60] McCracken KW, Howell JC, Wells JM, et al. Generating human intestinal tissue from pluripotent stem cells in vitro. Nat Protoc, 2011; 6, 1920−8. doi:  10.1038/nprot.2011.410
[61] Sinagoga KL, Wells JM. Generating human intestinal tissues from pluripotent stem cells to study development and disease. EMBO J, 2015; 34, 1149−63. doi:  10.15252/embj.201490686
[62] Múnera JO, Wells JM. Generation of gastrointestinal organoids from human pluripotent stem cells. In: Tsuji T. Organ Regeneration: 3D Stem Cell Culture & Manipulation. Humana Press. 2017, 167-77.
[63] Watson CL, Mahe MM, Múnera J, et al. An in vivo model of human small intestine using pluripotent stem cells. Nat Med, 2014; 20, 1310−4. doi:  10.1038/nm.3737
[64] Hughes CS, Postovit LM, Lajoie GA. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics, 2010; 10, 1886−90. doi:  10.1002/pmic.200900758
[65] Kozlowski MT, Crook CJ, Ku HT. Towards organoid culture without Matrigel. Commun Biol, 2021; 4, 1387. doi:  10.1038/s42003-021-02910-8
[66] Kim S, Min S, Choi YS, et al. Tissue extracellular matrix hydrogels as alternatives to Matrigel for culturing gastrointestinal organoids. Nat Commun, 2022; 13, 1692. doi:  10.1038/s41467-022-29279-4
[67] Kaur S, Kaur I, Rawal P, et al. Non-matrigel scaffolds for organoid cultures. Cancer Lett, 2021; 504, 58−66. doi:  10.1016/j.canlet.2021.01.025
[68] Shaffiey SA, Jia HP, Keane T, et al. Intestinal stem cell growth and differentiation on a tubular scaffold with evaluation in small and large animals. Regen Med, 2016; 11, 45−61. doi:  10.2217/rme.15.70
[69] Cruz-Acuña R, Quirós M, Farkas AE, et al. Synthetic hydrogels for human intestinal organoid generation and colonic wound repair. Nat Cell Biol, 2017; 19, 1326−35. doi:  10.1038/ncb3632
[70] Wang YL, Gunasekara DB, Reed MI, et al. A microengineered collagen scaffold for generating a polarized crypt-villus architecture of human small intestinal epithelium. Biomaterials, 2017; 128, 44−55. doi:  10.1016/j.biomaterials.2017.03.005
[71] Workman MJ, Gleeson JP, Troisi EJ, et al. Enhanced utilization of induced pluripotent stem cell-derived human intestinal organoids using microengineered chips. Cell Mol Gastroenterol Hepatol, 2018; 5, 669-77. e2.
[72] Giobbe GG, Crowley C, Luni C, et al. Extracellular matrix hydrogel derived from decellularized tissues enables endodermal organoid culture. Nat Commun, 2019; 10, 5658. doi:  10.1038/s41467-019-13605-4
[73] Hunt DR, Klett KC, Mascharak S, et al. Engineered matrices enable the culture of human patient-derived intestinal organoids. Adv Sci, 2021; 8, 2004705. doi:  10.1002/advs.202004705
[74] Ma WP, Zheng Y, Yang GZ, et al. A bioactive calcium silicate nanowire-containing hydrogel for organoid formation and functionalization. Mater Horiz, 2024; 11, 2957−73. doi:  10.1039/D4MH00228H
[75] Verissimo CS, Overmeer RM, Ponsioen B, et al. Targeting mutant RAS in patient-derived colorectal cancer organoids by combinatorial drug screening. eLife, 2016; 5, e18489. doi:  10.7554/eLife.18489
[76] Drost J, van Jaarsveld RH, Ponsioen B, et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature, 2015; 521, 43−7. doi:  10.1038/nature14415
[77] Fujii M, Shimokawa M, Date S, et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell, 2016; 18, 827−38. doi:  10.1016/j.stem.2016.04.003
[78] van de Wetering M, Francies HE, Francis JM, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell, 2015; 161, 933−45. doi:  10.1016/j.cell.2015.03.053
[79] Zietek T, Rath E, Haller D, et al. Intestinal organoids for assessing nutrient transport, sensing and incretin secretion. Sci Rep, 2015; 5, 16831. doi:  10.1038/srep16831
[80] Nigro G, Hanson M, Fevre C, et al. Intestinal organoids as a novel tool to study microbes-epithelium interactions. In: Turksen K. Organoids: Stem Cells, Structure, and Function. Humana. 2019, 183-94.
[81] Artegiani B, Hendriks D, Beumer J, et al. Fast and efficient generation of knock-in human organoids using homology-independent CRISPR-Cas9 precision genome editing. Nat Cell Biol, 2020; 22, 321−31. doi:  10.1038/s41556-020-0472-5
[82] Yui S, Nakamura T, Sato T, et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5⁺ stem cell. Nat Med, 2012; 18, 618−23. doi:  10.1038/nm.2695
[83] Sugimoto S, Kobayashi E, Fujii M, et al. An organoid-based organ-repurposing approach to treat short bowel syndrome. Nature, 2021; 592, 99−104.
[84] Nikolaev M, Mitrofanova O, Broguiere N, et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature, 2020; 585, 574−8. doi:  10.1038/s41586-020-2724-8
[85] Yun C, Kim SH, Kim KM, et al. Advantages of using 3D spheroid culture systems in toxicological and pharmacological assessment for osteogenesis research. Int J Mol Sci, 2024; 25, 2512. doi:  10.3390/ijms25052512
[86] Xiang T, Wang J, Li H. Current applications of intestinal organoids: a review. Stem Cell Res Ther, 2024; 15, 155. doi:  10.1186/s13287-024-03768-3
[87] Kar SK, van der Hee B, Loonen LMP, et al. Effects of undigested protein-rich ingredients on polarised small intestinal organoid monolayers. J Anim Sci Biotechnol, 2020; 11, 51. doi:  10.1186/s40104-020-00443-4
[88] Sittipo P, Kim HK, Han J, et al. Vitamin D3 suppresses intestinal epithelial stemness via ER stress induction in intestinal organoids. Stem Cell Res Ther, 2021; 12, 285. doi:  10.1186/s13287-021-02361-2
[89] Park JH, Kotani T, Konno T, et al. Promotion of intestinal epithelial cell turnover by commensal bacteria: role of short-chain fatty acids. PLoS One, 2016; 11, e0156334. doi:  10.1371/journal.pone.0156334
[90] Hasan NM, Johnson KF, Yin JY, et al. Intestinal stem cell-derived enteroids from morbidly obese patients preserve obesity-related phenotypes: elevated glucose absorption and gluconeogenesis. Mol Metab, 2021; 44, 101129. doi:  10.1016/j.molmet.2020.101129
[91] Seiwert N, Wecklein S, Demuth P, et al. Heme oxygenase 1 protects human colonocytes against ROS formation, oxidative DNA damage and cytotoxicity induced by heme iron, but not inorganic iron. Cell Death Dis, 2020; 11, 787. doi:  10.1038/s41419-020-02950-8
[92] Endres TM, Konstan MW. What is cystic fibrosis? JAMA, 2022; 327, 191.
[93] Ooi CY, Durie PR. Cystic fibrosis from the gastroenterologist's perspective. Nat Rev Gastroenterol Hepatol, 2016; 13, 175−85. doi:  10.1038/nrgastro.2015.226
[94] Dekkers JF, van der Ent CK, Beekman JM. Novel opportunities for CFTR-targeting drug development using organoids. Rare Dis, 2013; 1, e27112. doi:  10.4161/rdis.27112
[95] Schwank G, Koo BK, Sasselli V, et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell stem cell, 2013; 13, 653−8. doi:  10.1016/j.stem.2013.11.002
[96] Bigorgne AE, Farin HF, Lemoine R, et al. TTC7A mutations disrupt intestinal epithelial apicobasal polarity. J Clin Invest, 2014; 124, 328−37. doi:  10.1172/JCI71471
[97] Rodansky ES, Johnson LA, Huang S, et al. Intestinal organoids: a model of intestinal fibrosis for evaluating anti-fibrotic drugs. Exp Mol Pathol, 2015; 98, 346−51. doi:  10.1016/j.yexmp.2015.03.033
[98] Chan MCW, Cheung SKC, Mohammad KN, et al. Use of human intestinal enteroids to detect human norovirus infectivity. Emerg Infect Dis, 2019; 25, 1730−5. doi:  10.3201/eid2509.190205
[99] Pradhan S, Karve SS, Weiss AA, et al. Tissue responses to shiga toxin in human intestinal organoids. Cell Mol Gastroenterol Hepatol, 2020; 10, 171−90. doi:  10.1016/j.jcmgh.2020.02.006
[100] Forbester JL, Goulding D, Vallier L, et al. Interaction of Salmonella enterica serovar typhimurium with intestinal organoids derived from human induced pluripotent stem cells. Infect Immun, 2015; 83, 2926−34. doi:  10.1128/IAI.00161-15
[101] Foulke-Abel J, In J, Kovbasnjuk O, et al. Human enteroids as an ex-vivo model of host-pathogen interactions in the gastrointestinal tract. Exp Biol Med, 2014; 239, 1124−34. doi:  10.1177/1535370214529398
[102] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021; 71, 209−49. doi:  10.3322/caac.21660
[103] Li XS, Liang WZ, Yu CW, et al. Potential therapeutic strategies for quercetin targeting critical pathological mechanisms associated with colon adenocarcinoma and COVID-19. Front Pharmacol, 2022; 13, 988153. doi:  10.3389/fphar.2022.988153
[104] Liang WZ, Li XS, Yao Y, et al. Puerarin: a potential therapeutic for colon adenocarcinoma (COAD) patients suffering from SARS-CoV-2 infection. Front Pharmacol, 2022; 13, 921517. doi:  10.3389/fphar.2022.921517
[105] Liang WZ, Yi HY, Mao CY, et al. Research progress of RNA methylation modification in colorectal cancer. Front Pharmacol, 2022; 13, 903699. doi:  10.3389/fphar.2022.903699
[106] Roper J, Tammela T, Cetinbas NM, et al. In vivo genome editing and organoid transplantation models of colorectal cancer and metastasis. Nat Biotechnol, 2017; 35, 569−76. doi:  10.1038/nbt.3836
[107] O'Rourke KP, Loizou E, Livshits G, et al. Transplantation of engineered organoids enables rapid generation of metastatic mouse models of colorectal cancer. Nat Biotechnol, 2017; 35, 577−82. doi:  10.1038/nbt.3837
[108] Matano M, Date S, Shimokawa M, et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med, 2015; 21, 256−62. doi:  10.1038/nm.3802
[109] Fessler E, Drost J, van Hooff SR, et al. TGFβ signaling directs serrated adenomas to the mesenchymal colorectal cancer subtype. EMBO Mol Med, 2016; 8, 745−60. doi:  10.15252/emmm.201606184
[110] Schütte M, Risch T, Abdavi-Azar N, et al. Molecular dissection of colorectal cancer in pre-clinical models identifies biomarkers predicting sensitivity to EGFR inhibitors. Nat Commun, 2017; 8, 14262. doi:  10.1038/ncomms14262
[111] Kondo J, Ekawa T, Endo H, et al. High-throughput screening in colorectal cancer tissue-originated spheroids. Cancer Sci, 2019; 110, 345−55. doi:  10.1111/cas.13843
[112] Xinaris C, Brizi V, Remuzzi G. Organoid models and applications in biomedical research. Nephron, 2015; 130, 191−9. doi:  10.1159/000433566
[113] Pauli C, Hopkins BD, Prandi D, et al. Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov, 2017; 7, 462−77. doi:  10.1158/2159-8290.CD-16-1154
[114] Shen XH, Zhang YC, Xu ZQ, et al. KLF5 inhibition overcomes oxaliplatin resistance in patient-derived colorectal cancer organoids by restoring apoptotic response. Cell Death Dis, 2022; 13, 303. doi:  10.1038/s41419-022-04773-1
[115] Lukonin I, Serra D, Challet Meylan L, et al. Phenotypic landscape of intestinal organoid regeneration. Nature, 2020; 586, 275−80. doi:  10.1038/s41586-020-2776-9
[116] Norkin M, Ordóñez-Morán P, Huelsken J. High-content, targeted RNA-seq screening in organoids for drug discovery in colorectal cancer. Cell Rep, 2021; 35, 109026. doi:  10.1016/j.celrep.2021.109026
[117] Luo ZG, Wang BT, Luo FF, et al. Establishment of a large-scale patient-derived high-risk colorectal adenoma organoid biobank for high-throughput and high-content drug screening. BMC Med, 2023; 21, 336. doi:  10.1186/s12916-023-03034-y
[118] Lin L, DeMartino J, Wang DS, et al. Unbiased transcription factor CRISPR screen identifies ZNF800 as master repressor of enteroendocrine differentiation. Science, 2023; 382, 451−8. doi:  10.1126/science.adi2246
[119] Mertens S, Huismans MA, Verissimo CS, et al. Drug-repurposing screen on patient-derived organoids identifies therapy-induced vulnerability in KRAS-mutant colon cancer. Cell Rep, 2023; 42, 112324. doi:  10.1016/j.celrep.2023.112324
[120] Mao YN, Wang W, Yang JW, et al. Drug repurposing screening and mechanism analysis based on human colorectal cancer organoids. Protein Cell, 2024; 15, 285−304. doi:  10.1093/procel/pwad038
[121] Grabinger T, Luks L, Kostadinova F, et al. Ex vivo culture of intestinal crypt organoids as a model system for assessing cell death induction in intestinal epithelial cells and enteropathy. Cell Death Dis, 2014; 5, e1228. doi:  10.1038/cddis.2014.183
[122] Takahashi Y, Noguchi M, Inoue Y, et al. Organoid-derived intestinal epithelial cells are a suitable model for preclinical toxicology and pharmacokinetic studies. iScience, 2022; 25, 104542. doi:  10.1016/j.isci.2022.104542
[123] Harter MF, Recaldin T, Gerard R, et al. Analysis of off-tumour toxicities of T-cell-engaging bispecific antibodies via donor-matched intestinal organoids and tumouroids. Nat Biomed Eng, 2024; 8, 345−60.
[124] Brody H. Colorectal cancer. Nature, 2015; 521, S1. doi:  10.1038/521S1a
[125] Weeber F, van de Wetering M, Hoogstraat M, et al. Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases. Proc Natl Acad Sci USA, 2015; 112, 13308−11. doi:  10.1073/pnas.1516689112
[126] Saini A. Cystic fibrosis patients benefit from mini guts. Cell Stem Cell, 2016; 19, 425−7. doi:  10.1016/j.stem.2016.09.001
[127] Fajac I, Burgel PR, Martin C. New drugs, new challenges in cystic fibrosis care. Eur Respir Rev, 2024; 33, 240045. doi:  10.1183/16000617.0045-2024
[128] Furstova E, Dousova T, Beranek J, et al. Response to elexacaftor/tezacaftor/ivacaftor in intestinal organoids derived from people with cystic fibrosis. J Cyst Fibros, 2022; 21, 243−5. doi:  10.1016/j.jcf.2021.07.006
[129] Vlachogiannis G, Hedayat S, Vatsiou A, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science, 2018; 359, 920−6. doi:  10.1126/science.aao2774
[130] Narasimhan V, Wright JA, Churchill M, et al. Medium-throughput drug screening of patient-derived organoids from colorectal peritoneal metastases to direct personalized therapy. Clin Cancer Res, 2020; 26, 3662−70. doi:  10.1158/1078-0432.CCR-20-0073
[131] Clevers H. Modeling development and disease with organoids. Cell, 2016; 165, 1586−97. doi:  10.1016/j.cell.2016.05.082
[132] Quintard C, Tubbs E, Jonsson G, et al. A microfluidic platform integrating functional vascularized organoids-on-chip. Nat Commun, 2024; 15, 1452. doi:  10.1038/s41467-024-45710-4
[133] He GW, Lin L, DeMartino J, et al. Optimized human intestinal organoid model reveals interleukin-22-dependency of paneth cell formation. Cell Stem Cell, 2022; 29, 1718−20. doi:  10.1016/j.stem.2022.11.001
[134] Leushacke M, Barker N. Ex vivo culture of the intestinal epithelium: strategies and applications. Gut, 2014; 63, 1345−54. doi:  10.1136/gutjnl-2014-307204
[135] Yin XL, Farin HF, van Es JH, et al. Niche-independent high-purity cultures of Lgr5+ intestinal stem cells and their progeny. Nat Methods, 2014; 11, 106−12. doi:  10.1038/nmeth.2737
[136] Bartfeld S, Bayram T, van de Wetering M, et al. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology, 2015; 148, 126-36. e6.
[137] Almeqdadi M, Mana MD, Roper J, et al. Gut organoids: mini-tissues in culture to study intestinal physiology and disease. Am J Physiol Cell Physiol, 2019; 317, C405−19. doi:  10.1152/ajpcell.00300.2017
[138] Hibiya S, Tsuchiya K, Hayashi R, et al. Long-term inflammation transforms intestinal epithelial cells of colonic organoids. J Crohns Colitis, 2017; 11, 621−30.
[139] Sarvestani SK, Signs S, Hu B, et al. Induced organoids derived from patients with ulcerative colitis recapitulate colitic reactivity. Nat Commun, 2021; 12, 262. doi:  10.1038/s41467-020-20351-5
[140] Fan YY, Davidson LA, Chapkin RS. Murine colonic organoid culture system and downstream assay applications. In: Turksen K. Organoids: Stem Cells, Structure, and Function. Humana. 2019, 171-81.
[141] Sato T, Clevers H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science, 2013; 340, 1190−4. doi:  10.1126/science.1234852