[1] |
Owolabi MO, Thrift AG, Mahal A, et al. Primary stroke prevention worldwide: translating evidence into action. Lancet Public Health, 2022; 7, e74−85. doi: 10.1016/S2468-2667(21)00230-9 |
[2] |
Saldana S, Breslin J, Hanify J, et al. Comparison of clevidipine and nicardipine for acute blood pressure reduction in hemorrhagic stroke. Neurocrit Care, 2022; 36, 983−92. doi: 10.1007/s12028-021-01407-w |
[3] |
Xiao MJ, Xiao ZJ, Yang BB, et al. Blood-brain barrier: more contributor to disruption of central nervous system homeostasis than victim in neurological disorders. Front Neurosci, 2020; 14, 764. doi: 10.3389/fnins.2020.00764 |
[4] |
Cui Y, Zhao Y, Chen SY, et al. Association of serum biomarkers with post-thrombolytic symptomatic intracranial hemorrhage in stroke: a comprehensive protein microarray analysis from INTRECIS study. Front Neurol, 2022; 13, 751912. doi: 10.3389/fneur.2022.751912 |
[5] |
Schaeffer S, Iadecola C. Revisiting the neurovascular unit. Nat Neurosci, 2021; 24, 1198−209. doi: 10.1038/s41593-021-00904-7 |
[6] |
McConnell HL, Mishra A. Cells of the blood-brain barrier: an overview of the neurovascular unit in health and disease. In: Stone N. The Blood-Brain Barrier: Methods and Protocols. Humana. 2022, 3-24. |
[7] |
Dormanns K, Brown RG, David T. Neurovascular coupling: a parallel implementation. Front Comput Neurosci, 2015; 9, 109. |
[8] |
Iadecola C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron, 2017; 96, 17−42. doi: 10.1016/j.neuron.2017.07.030 |
[9] |
Liu JC, Guo YZ, Zhang CY, et al. Clearance systems in the brain, from structure to function. Front Cell Neurosci, 2022; 15, 729706. doi: 10.3389/fncel.2021.729706 |
[10] |
Nedergaard M, Goldman SA. Glymphatic failure as a final common pathway to dementia. Science, 2020; 370, 50−6. doi: 10.1126/science.abb8739 |
[11] |
Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders. Lancet Neurol, 2018; 17, 1016−24. doi: 10.1016/S1474-4422(18)30318-1 |
[12] |
Kitchen P, Salman MM, Halsey AM, et al. Targeting aquaporin-4 subcellular localization to treat central nervous system edema. Cell, 2020; 181, 784-99. e19. |
[13] |
Qing WG, Dong YQ, Ping TQ, et al. Brain edema after intracerebral hemorrhage in rats: the role of iron overload and aquaporin 4. J Neurosurg, 2009; 110, 462−8. doi: 10.3171/2008.4.JNS17512 |
[14] |
Wang GQ, Manaenko A, Shao AW, et al. Low-density lipoprotein receptor-related protein-1 facilitates heme scavenging after intracerebral hemorrhage in mice. J Cereb Blood Flow Metab, 2017; 37, 1299−310. doi: 10.1177/0271678X16654494 |
[15] |
Wang GQ, Guo ZN, Tong LS, et al. TLR7 (toll-like receptor 7) facilitates heme scavenging through the BTK (Bruton tyrosine kinase)-CRT (calreticulin)-LRP1 (low-density lipoprotein receptor-related protein-1)-Hx (hemopexin) pathway in murine intracerebral hemorrhage. Stroke, 2018; 49, 3020−9. doi: 10.1161/STROKEAHA.118.022155 |
[16] |
Mitchell JW, Gillette MU. Development of circadian neurovascular function and its implications. Front Neurosci, 2023; 17, 1196606. doi: 10.3389/fnins.2023.1196606 |
[17] |
Hablitz LM, Plá V, Giannetto M, et al. Circadian control of brain glymphatic and lymphatic fluid flow. Nat Commun, 2020; 11, 4411. doi: 10.1038/s41467-020-18115-2 |
[18] |
Cardinali DP. Melatonin and healthy aging. Vitam Horm, 2021; 115, 67−88. |
[19] |
Wahl S, Engelhardt M, Schaupp P, et al. The inner clock-blue light sets the human rhythm. J Biophotonics, 2019; 12, e201900102. doi: 10.1002/jbio.201900102 |
[20] |
Xue Q, Liu Y, Qi HY, et al. A novel brain neurovascular unit model with neurons, astrocytes and microvascular endothelial cells of rat. Int J Biol Sci, 2013; 9, 174−89. doi: 10.7150/ijbs.5115 |
[21] |
Li CX, Wang XQ, Cheng FF, et al. Hyodeoxycholic acid protects the neurovascular unit against oxygen-glucose deprivation and reoxygenation-induced injury in vitro. Neural Regen Res, 2019; 14, 1941−9. doi: 10.4103/1673-5374.259617 |
[22] |
Keep RF, Andjelkovic AV, Xiang JM, et al. Brain endothelial cell junctions after cerebral hemorrhage: changes, mechanisms and therapeutic targets. J Cereb Blood Flow Metab, 2018; 38, 1255−75. doi: 10.1177/0271678X18774666 |
[23] |
Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab, 2016; 36, 513−38. doi: 10.1177/0271678X15617172 |
[24] |
Chen SP, Li LZ, Peng C, et al. Targeting oxidative stress and inflammatory response for blood-brain barrier protection in intracerebral hemorrhage. Antioxid Redox Signal, 2022; 37, 115−34. doi: 10.1089/ars.2021.0072 |
[25] |
Da Mesquita S, Papadopoulos Z, Dykstra T, et al. Meningeal lymphatics affect microglia responses and anti-Aβ immunotherapy. Nature, 2021; 593, 255−60. doi: 10.1038/s41586-021-03489-0 |
[26] |
Liu LR, Liu JC, Bao JS, et al. Interaction of microglia and astrocytes in the neurovascular unit. Front Immunol, 2020; 11, 1024. doi: 10.3389/fimmu.2020.01024 |
[27] |
Tiret P, Chaigneau E, Lecoq J, et al. Two-photon imaging of capillary blood flow in olfactory bulb glomeruli. In: Hyder F. Dynamic Brain Imaging: Multi-Modal Methods and In Vivo Applications. Humana. 2009, 81-91. |
[28] |
LeDoux JE, Thompson ME, Iadecola C, et al. Local cerebral blood flow increases during auditory and emotional processing in the conscious rat. Science, 1983; 221, 576−8. doi: 10.1126/science.6867731 |
[29] |
Zhang WJ, Zhao XJ, Qi XW, et al. Induced pluripotent stem cell model revealed impaired neurovascular interaction in genetic small vessel disease cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Front Cell Neurosci, 2023; 17, 1195470. doi: 10.3389/fncel.2023.1195470 |
[30] |
Wang C, Gu W, Zhao K, et al. A new neurotoxicity model composed of a neurovascular unit in vitro. Cell Mol Biol, 2016; 62, 21−6. doi: 10.14715/cmb/2016.62.13.5 |
[31] |
Greco CM, Sassone-Corsi P. Circadian blueprint of metabolic pathways in the brain. Nat Rev Neurosci, 2019; 20, 71−82. |
[32] |
Neves AR, Albuquerque T, Quintela T, et al. Circadian rhythm and disease: relationship, new insights, and future perspectives. J Cell Physiol, 2022; 237, 3239−56. doi: 10.1002/jcp.30815 |
[33] |
Deaver JA, Eum SY, Toborek M. Circadian disruption changes gut microbiome taxa and functional gene composition. Front Microbiol, 2018; 9, 737. doi: 10.3389/fmicb.2018.00737 |
[34] |
Kress GJ, Liao F, Dimitry J, et al. Regulation of amyloid-β dynamics and pathology by the circadian clock. J Exp Med, 2018; 215, 1059−68. doi: 10.1084/jem.20172347 |
[35] |
Yang DF, Huang WC, Wu CW, et al. Acute sleep deprivation exacerbates systemic inflammation and psychiatry disorders through gut microbiota dysbiosis and disruption of circadian rhythms. Microbiol Res, 2023; 268, 127292. doi: 10.1016/j.micres.2022.127292 |
[36] |
Kawaguchi C, Shintani N, Hayata-Takano A, et al. Lipocalin-type prostaglandin D synthase regulates light-induced phase advance of the central circadian rhythm in mice. Commun Biol, 2020; 3, 557. doi: 10.1038/s42003-020-01281-w |
[37] |
Zhang SL, Yue ZF, Arnold DM, et al. A circadian clock in the blood-brain barrier regulates xenobiotic efflux. Cell, 2018; 173, 130-9. e10. |
[38] |
Lan X, Han XN, Li Q, et al. (−)-Epicatechin, a natural flavonoid compound, protects astrocytes against hemoglobin toxicity via Nrf2 and AP-1 signaling pathways. Mol Neurobiol, 2017; 54, 7898−907. doi: 10.1007/s12035-016-0271-y |
[39] |
Li Q, Lan X, Han XN, et al. Microglia-derived interleukin-10 accelerates post-intracerebral hemorrhage hematoma clearance by regulating CD36. Brain Behav Immun, 2021; 94, 437−57. doi: 10.1016/j.bbi.2021.02.001 |
[40] |
Feldman GJ, Mullin JM, Ryan MP. Occludin: structure, function and regulation. Adv Drug Deliv Rev, 2005; 57, 883−917. doi: 10.1016/j.addr.2005.01.009 |
[41] |
Spinedi E, Cardinali DP. Neuroendocrine-metabolic dysfunction and sleep disturbances in neurodegenerative disorders: focus on Alzheimer's disease and melatonin. Neuroendocrinology, 2019; 108, 354−64. doi: 10.1159/000494889 |
[42] |
Li YM, Zhang J, Wan JL, et al. Melatonin regulates Aβ production/clearance balance and Aβ neurotoxicity: a potential therapeutic molecule for Alzheimer's disease. Biomed Pharmacother, 2020; 132, 110887. doi: 10.1016/j.biopha.2020.110887 |
[43] |
Zhao ZA, Li P, Ye SY, et al. Perivascular AQP4 dysregulation in the hippocampal CA1 area after traumatic brain injury is alleviated by adenosine A2A receptor inactivation. Sci Rep, 2017; 7, 2254. doi: 10.1038/s41598-017-02505-6 |
[44] |
Semyachkina-Glushkovskaya OV, Karavaev AS, Prokhorov MD, et al. EEG biomarkers of activation of the lymphatic drainage system of the brain during sleep and opening of the blood-brain barrier. Comput Struct Biotechnol J, 2023; 21, 758−68. doi: 10.1016/j.csbj.2022.12.019 |
[45] |
Ma QY, Zhao Z, Sagare AP, et al. Blood-brain barrier-associated pericytes internalize and clear aggregated amyloid-β42 by LRP1-dependent apolipoprotein E isoform-specific mechanism. Mol Neurodegener, 2018; 13, 57. doi: 10.1186/s13024-018-0286-0 |
[46] |
Wang GQ, Li T, Duan SN, et al. PPAR-γ promotes hematoma clearance through haptoglobin-hemoglobin-CD163 in a rat model of intracerebral hemorrhage. Behav Neurol, 2018; 2018, 7646104. |