[1] |
Leyssens L, Vinck B, Van Der Straeten C, et al. Cobalt toxicity in humans-A review of the potential sources and systemic health effects. Toxicology, 2017; 387, 43−56. doi: 10.1016/j.tox.2017.05.015 |
[2] |
DeRosa C. Agency for toxic substances and disease registry’s toxicological profiles: contribution to public health. Toxicology and Industrial Health, 1994; 10, 117. doi: 10.1177/074823379401000301 |
[3] |
Oyagbemi AA, Akinrinde AS, Adebiyi OE, et al. Luteolin supplementation ameliorates cobalt-induced oxidative stress and inflammation by suppressing NF-кB/Kim-1 signaling in the heart and kidney of rats. Enviromental Toxicology and Pharmacology, 2020; 80, 103488. doi: 10.1016/j.etap.2020.103488 |
[4] |
Akagi R, Akatsu Y, Fisch KM, et al. Dysregulated circadian rhythm pathway in human osteoarthritis: NR1D1 and BMAL1 suppression alters TGF-β signaling in chondrocytes. Osteoarthritis Cartilage, 2017; 25, 943−51. doi: 10.1016/j.joca.2016.11.007 |
[5] |
Mercan M, Şehirli AÖ, Chukwunyere U, et al. Acute kidney injury due to COVID-19 and the circadian rhythm. Medical Hypotheses, 2021; 146, 110463. doi: 10.1016/j.mehy.2020.110463 |
[6] |
Nikolaeva S, Ansermet C, Centeno G, et al. Nephron-specific deletion of circadian clock gene Bmal1 alters the plasma and renal metabolome and impairs drug disposition. Journal of the American Society of Nephrology: JASN, 2016; 27, 2997−3004. doi: 10.1681/ASN.2015091055 |
[7] |
Tokonami N, Mordasini D, Pradervand S, et al. Local renal circadian clocks control fluid-electrolyte homeostasis and BP. Journal of the American Society of Nephrology: JASN, 2014; 25, 1430−9. doi: 10.1681/ASN.2013060641 |
[8] |
Zhang DG, Pollock DM. Circadian regulation of kidney function: finding a role for Bmal1. American Journal of Physiology-Renal Physiology, 2018; 314, F675−8. doi: 10.1152/ajprenal.00580.2017 |
[9] |
Hilfenhaus M. Circadian rhythm of the renin-angiotensin-aldosterone system in the rat. Archives Toxicology, 1976; 36, 305−16. doi: 10.1007/BF00340536 |