| [1] | Wang C, Horby PW, Hayden FG, et al. A novel coronavirus outbreak of global health concern. Lancet, 2020; 395, 470−3. doi: 10.1016/S0140-6736(20)30185-9 |
| [2] | Sohrabi C, Alsafi Z, O'Neill N, et al. World health organization declares global emergency: a review of the 2019 novel coronavirus (COVID-19). Int J Surg, 2020; 76, 71−6. doi: 10.1016/j.ijsu.2020.02.034 |
| [3] | Chan JF, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet, 2020; 395, 514−23. doi: 10.1016/S0140-6736(20)30154-9 |
| [4] | Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and tmprss2 and is blocked by a clinically proven protease inhibitor. Cell, 2020; 181, 271−80. doi: 10.1016/j.cell.2020.02.052 |
| [5] | Jun Lan, Jiwan Ge, Jinfang Yu, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 2020; 581, 215−20. doi: 10.1038/s41586-020-2180-5 |
| [6] | Yu P, Qi F, Xu Y, et al. Age-related rhesus macaque models of COVID-19. Animal Model Exp Med, 2020; 3, 93−7. doi: 10.1002/ame2.12108 |
| [7] | Cava C, Bertoli G, Castiglioni I. In silico discovery of candidate drugs against COVID-19. Viruses, 2020; 12. |
| [8] | Wang K, Chen W, Zhou Y-S, et al. SARS-CoV-2 invades host cells via a novel route: Cd147-spike protein. bioRxiv, 2020. |
| [9] | Sigrist CJ, Bridge A, Le Mercier P. A potential role for integrins in host cell entry by SARS-CoV-2. Antiviral Res, 2020; 177, 104759. doi: 10.1016/j.antiviral.2020.104759 |
| [10] | Shi J, Wen Z, Zhong G, et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-Coronavirus 2. Science, 2020; 368, 1016−20. doi: 10.1126/science.abb7015 |