[1] Baer R, Bankier AT, Biggin MD, et al. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature, 1984; 310, 207−11. doi:  10.1038/310207a0
[2] Zhang BC, Choi IK. Facts and hopes in the relationship of EBV with cancer immunity and immunotherapy. Clin Cancer Res, 2022; 28, 4363−9. doi:  10.1158/1078-0432.CCR-21-3408
[3] Teow SY, Liew K, Khoo ASB, et al. Pathogenic role of exosomes in epstein-barr virus (EBV)-associated cancers. Int J Biol Sci, 2017; 13, 1276−86. doi:  10.7150/ijbs.19531
[4] Xian RR, Ambinder RF. Cell-free circulating tumor DNA and epstein-barr virus DNA for early diagnosis of Epstein-Barr virus-associated cancers. J Clin Oncol, 2023; 41, 4290−2. doi:  10.1200/JCO.23.00687
[5] Peng HQ, Li ZZ, Long YJ, et al. Clinical value of a plasma Epstein-Barr virus DNA assay in the diagnosis of recurrent or metastatic nasopharyngeal carcinoma: a meta-analysis. Biosci Rep, 2019; 39, BSR20190691. doi:  10.1042/BSR20190691
[6] Al-Khreisat MJ, Ismail NH, Tabnjh A, et al. Worldwide prevalence of Epstein-Barr virus in patients with burkitt lymphoma: a systematic review and meta-analysis. Diagnostics (Basel), 2023; 13, 2068. doi:  10.3390/diagnostics13122068
[7] Hirabayashi M, Traverse-Glehen A, Combes JD, et al. Estimating the prevalence of Epstein-Barr virus in primary gastric lymphoma: a systematic review and meta-analysis. Infect Agent Cancer, 2023; 18, 8. doi:  10.1186/s13027-023-00482-2
[8] Bjornevik K, Cortese M, Healy BC, et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science, 2022; 375, 296−301. doi:  10.1126/science.abj8222
[9] Zheng Q, Zhu K, Gao CN, et al. Prevalence of Epstein-Barr virus infection and characteristics of lymphocyte subsets in newly onset juvenile dermatomyositis. World J Pediatr, 2021; 17, 205−9. doi:  10.1007/s12519-019-00314-7
[10] Bogers L, Kuiper KL, Smolders J, et al. Epstein-Barr virus and genetic risk variants as determinants of T-bet+ B cell-driven autoimmune diseases. Immunol Lett, 2023; 261, 66−74. doi:  10.1016/j.imlet.2023.07.006
[11] Villafuerte DB, Lavrynenko O, Qazi R, et al. Chronic active Epstein-Barr exacerbated by COVID-19 co-infection. Int J Infect Dis, 2022; 122, 976−8. doi:  10.1016/j.ijid.2022.07.046
[12] Chen XT, Li H, Wu CL, et al. Epstein‒Barr virus and human herpesvirus 6 infection in patients with systemic lupus erythematosus. Virol J, 2023; 20, 29. doi:  10.1186/s12985-023-01987-3
[13] Yan M, Zhang Y, Yang F, et al. Comparative study between chronic immune thrombocytopenia patients and healthy population on Epstein-Barr virus infection status by polymerase chain reaction. Expert Rev Hematol, 2020; 13, 781−6. doi:  10.1080/17474086.2020.1772746
[14] Wu YM, Yan J, Chen LL, et al. Infection frequency of Epstein-Barr virus in subgingival samples from patients with different periodontal status and its correlation with clinical parameters. J Zhejiang Univ Sci B, 2006; 7, 876−83. doi:  10.1631/jzus.2006.B0876
[15] Li JY, Chen XP, Tie YQ, et al. Detection of low-load Epstein-Barr virus in blood samples by enriched recombinase aided amplification assay. AMB Express, 2022; 12, 71. doi:  10.1186/s13568-022-01415-9
[16] Shen ZY, Hu LL, Yao MK, et al. Disparity analysis and prognostic value of pretreatment whole blood Epstein-Barr virus DNA load and Epstein-Barr encoding region status in lymphomas: A retrospective multicenter study in Huaihai Lymphoma Working Group. Int J Cancer, 2022; 150, 327−34. doi:  10.1002/ijc.33802
[17] Kimura H, Cohen JI. Chronic active Epstein-Barr virus disease. Front Immunol, 2017; 8, 1867. doi:  10.3389/fimmu.2017.01867
[18] Ito Y, Suzuki M, Kawada JI, et al. Diagnostic values for the viral load in peripheral blood mononuclear cells of patients with chronic active Epstein-Barr virus disease. J Infect Chemother, 2016; 22, 268−71. doi:  10.1016/j.jiac.2015.11.002
[19] Kawada JI, Ito Y, Ohshima K, et al. Updated guidelines for chronic active Epstein-Barr virus disease. Int J Hematol, 2023; 118, 568−76. doi:  10.1007/s12185-023-03660-5
[20] Tseng YJ, Ding WQ, Zhong L, et al. Chronic active Epstein-Barr virus (CAEBV) enteritis. Int J Infect Dis, 2019; 82, 15−7. doi:  10.1016/j.ijid.2019.02.020
[21] Wang JS, Su M, Wei N, et al. Chronic active Epstein-Barr virus disease originates from infected hematopoietic stem cells. Blood, 2024; 143, 32−41. doi:  10.1182/blood.2023021074
[22] Rzepka M, Depka D, Gospodarek-Komkowska E, et al. Diagnostic value of whole-blood and plasma samples in Epstein-Barr virus infections. Diagnostics (Basel), 2023; 13, 476. doi:  10.3390/diagnostics13030476
[23] Gao WA, Wu JH, Han YY, et al. Study on diagnostic value of results of EB virus nucleic acid quantification in whole blood lymphocyte and serum in children with EB virus infection. Cytokine, 2022; 155, 155902. doi:  10.1016/j.cyto.2022.155902
[24] Zhou XH, Liang JH, Wang L, et al. High viral loads of circulating Epstein-Barr virus DNA copy number in peripheral blood is associated with inferior prognosis in patients with mantle cell lymphoma. J Cancer, 2020; 11, 4980−8. doi:  10.7150/jca.37484
[25] Zeng MC, Jia QJ, Chen JJ, et al. High plasma EBV-DNA load and positive EBER status associated with viral recurrence and persistent infection in early treatment of lymphoma. Clin Exp Med, 2023; 23, 1307−16.
[26] Zhu J, Fang RH, Pan ZW, et al. Circulating lymphocyte subsets are prognostic factors in patients with nasopharyngeal carcinoma. BMC Cancer, 2022; 22, 716. doi:  10.1186/s12885-022-09438-y
[27] Chen WJ, Xu WN, Wang HY, et al. Plasma Epstein-Barr virus DNA and risk of nasopharyngeal carcinoma in a prospective seropositive population. BMC Cancer, 2021; 21, 651. doi:  10.1186/s12885-021-08408-0
[28] Hua L, Chen SJ, Wei MZ, et al. Predictive value of ERCC1 mRNA level from receiver-operator characteristic and pretreatment EBV-DNA virus load in stage II nasopharyngeal carcinoma patients receiving intensity-modulated radiotherapy with concurrent Cisplatin. Cancer Biother Radiopharm, 2022; 37, 2−10.
[29] Fishman JA. Infection in organ transplantation. Am J Transplant, 2017; 17, 856−79. doi:  10.1111/ajt.14208
[30] Holmes RD, Orban-Eller K, Karrer FR, et al. Response of elevated Epstein-Barr virus DNA levels to therapeutic changes in pediatric liver transplant patients: 56-month follow up and outcome. Transplantation, 2002; 74, 367−72. doi:  10.1097/00007890-200208150-00013
[31] Styczynski J, van der Velden W, Fox CP, et al. Management of Epstein-Barr Virus infections and post-transplant lymphoproliferative disorders in patients after allogeneic hematopoietic stem cell transplantation: Sixth European Conference on Infections in Leukemia (ECIL-6) guidelines. Haematologica, 2016; 101, 803−11. doi:  10.3324/haematol.2016.144428
[32] Kullberg-Lindh C, Olofsson S, Brune M, et al. Comparison of serum and whole blood levels of cytomegalovirus and Epstein-Barr virus DNA. Transpl Infect Dis, 2008; 10, 308−15. doi:  10.1111/j.1399-3062.2008.00313.x
[33] Ruf S, Behnke-Hall K, Gruhn B, et al. Comparison of six different specimen types for Epstein-Barr viral load quantification in peripheral blood of pediatric patients after heart transplantation or after allogeneic hematopoietic stem cell transplantation. J Clin Virol, 2012; 53, 186−94. doi:  10.1016/j.jcv.2011.11.010
[34] Piralam B, Prosperi C, Thamthitiwat S, et al. Pneumococcal colonization prevalence and density among Thai children with severe pneumonia and community controls. PLoS One, 2020; 15, e0232151. doi:  10.1371/journal.pone.0232151
[35] Lazzarotto T, Chiereghin A, Piralla A, et al. Kinetics of cytomegalovirus and Epstein-Barr virus DNA in whole blood and plasma of kidney transplant recipients: Implications on management strategies. PLoS One, 2020; 15, e0238062. doi:  10.1371/journal.pone.0238062
[36] Petrara MR, Serraino D, Di Bella C, et al. Immune activation, immune senescence and levels of Epstein Barr Virus in kidney transplant patients: Impact of mTOR inhibitors. Cancer Lett, 2020; 469, 323−31. doi:  10.1016/j.canlet.2019.10.045
[37] Montani MSG, Santarelli R, Granato M, et al. EBV reduces autophagy, intracellular ROS and mitochondria to impair monocyte survival and differentiation. Autophagy, 2019; 15, 652−67. doi:  10.1080/15548627.2018.1536530
[38] Walabh P, Moore DP, Hajinicolaou C. Post-transplant lymphoproliferative disorder in pediatric liver transplant recipients: Experience from a South African transplant center. Transpl Infect Dis, 2024; 26, e14221. doi:  10.1111/tid.14221
[39] Seo E, Kim J, Oh SH, et al. Epstein-Barr viral load monitoring for diagnosing post-transplant lymphoproliferative disorder in pediatric liver transplant recipients. Pediatr Transplant, 2020; 24, e13666. doi:  10.1111/petr.13666
[40] Lin JC, Chen XK, Wu HM, et al. Peripheral blood lymphocyte counts in patients with infectious mononucleosis or chronic active Epstein-Barr virus infection and prognostic risk factors of chronic active Epstein-Barr virus infection. Am J Transl Res, 2021; 13, 12797−806.
[41] Zhang J, Qin SC, Jin Z, et al. The clinical significance and prognostic role of whole-blood Epstein-Barr virus DNA in lymphoma-associated hemophagocytic lymphohistiocytosis. J Clin Immunol, 2023; 43, 1302−10. doi:  10.1007/s10875-023-01493-9
[42] Liu QF, Xuan L, Liu H, et al. Molecular monitoring and stepwise preemptive therapy for Epstein-Barr virus viremia after allogeneic stem cell transplantation. Am J Hematol, 2013; 88, 550−5. doi:  10.1002/ajh.23452
[43] Thieme CJ, Schulz M, Wehler P, et al. In vitro and in vivo evidence that the switch from calcineurin to mTOR inhibitors may be a strategy for immunosuppression in Epstein-Barr virus-associated post-transplant lymphoproliferative disorder. Kidney Int, 2022; 102, 1392−408. doi:  10.1016/j.kint.2022.08.025