[1] |
Roth GA, Mensah GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study. J Am Coll Cardiol, 2020; 76, 2982−3021. doi: 10.1016/j.jacc.2020.11.010 |
[2] |
Coppinger C, Pomales B, Movahed MR, et al. Berberine: a multi-target natural PCSK9 inhibitor with the potential to treat diabetes, alzheimer's, cancer and cardiovascular disease. Curr Rev Clin Exp Pharmacol, 2024; 19, 312−26. doi: 10.2174/0127724328250471231222094648 |
[3] |
Cholesterol Treatment Trialists' (CTT) Collaboration. Efficacy and safety of LDL-lowering therapy among men and women: meta-analysis of individual data from 174 000 participants in 27 randomised trials. Lancet, 2015; 385, 1397−405. doi: 10.1016/S0140-6736(14)61368-4 |
[4] |
Baumgartner S, Bruckert E, Gallo A, et al. The position of functional foods and supplements with a serum LDL-C lowering effect in the spectrum ranging from universal to care-related CVD risk management. Atherosclerosis, 2020; 311, 116−23. doi: 10.1016/j.atherosclerosis.2020.07.019 |
[5] |
Yu Q, Zheng HD, Zhang YP. Inducible degrader of LDLR: a potential novel therapeutic target and emerging treatment for hyperlipidemia. Vascul Pharmacol, 2021; 140, 106878. doi: 10.1016/j.vph.2021.106878 |
[6] |
Xu MT, Zhu XX, Wu JY, et al. PCSK9 inhibitor recaticimab for hypercholesterolemia on stable statin dose: a randomized, double-blind, placebo-controlled phase 1b/2 study. BMC Med, 2022; 20, 13. doi: 10.1186/s12916-021-02208-w |
[7] |
Mansi IA, Chansard M, Lingvay I, et al. Association of statin therapy initiation with diabetes progression: a retrospective matched-cohort study. JAMA Intern Med, 2021; 181, 1562−74. doi: 10.1001/jamainternmed.2021.5714 |
[8] |
Kockx M, Kritharides L. Pancreatic PCSK9 and its involvement in diabetes. J Thorac Dis, 2019; 11, S2018−22. doi: 10.21037/jtd.2019.06.37 |
[9] |
Kosmas CE, Silverio D, Sourlas A, et al. Impact of lipid-lowering therapy on glycemic control and the risk for new-onset diabetes mellitus. Drugs Context, 2018; 7, 212562. |
[10] |
Seidah NG, Prat A, Pirillo A, et al. Novel strategies to target proprotein convertase subtilisin kexin 9: beyond monoclonal antibodies. Cardiovasc Res, 2019; 115, 510−8. doi: 10.1093/cvr/cvz003 |
[11] |
Hao Y, Yang YL, Wang YC, et al. Effect of the early application of evolocumab on blood lipid profile and cardiovascular prognosis in patients with extremely high-risk acute coronary syndrome. Int Heart J, 2022; 63, 669−77. doi: 10.1536/ihj.22-052 |
[12] |
Chan JCY, Piper DE, Cao Q, et al. A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc Natl Acad Sci USA, 2009; 106, 9820−5. doi: 10.1073/pnas.0903849106 |
[13] |
Chikowore T, Cockeran M, Conradie KR, et al. C679X loss-of-function PCSK9 variant lowers fasting glucose levels in a black South African population: a longitudinal study. Diabetes Res Clin Pract, 2018; 144, 279−85. doi: 10.1016/j.diabres.2018.09.012 |
[14] |
Banach M, Penson PE, Vrablik M, et al. Optimal use of lipid-lowering therapy after acute coronary syndromes: a Position Paper endorsed by the International Lipid Expert Panel (ILEP). Pharmacol Res, 2021; 166, 105499. doi: 10.1016/j.phrs.2021.105499 |
[15] |
Sabatine MS, Giugliano RP, Keech AC, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med, 2017; 376, 1713−22. doi: 10.1056/NEJMoa1615664 |
[16] |
Schwartz GG, Steg PG, Szarek M, et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med, 2018; 379, 2097−107. doi: 10.1056/NEJMoa1801174 |
[17] |
Shapiro MD, Tavori H, Fazio S. PCSK9: from basic science discoveries to clinical trials. Circ Res, 2018; 122, 1420−38. doi: 10.1161/CIRCRESAHA.118.311227 |
[18] |
Sattar N, Preiss D, Murray HM, et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet, 2010; 375, 735−42. doi: 10.1016/S0140-6736(09)61965-6 |
[19] |
Päth G, Perakakis N, Mantzoros CS, et al. PCSK9 inhibition and cholesterol homeostasis in insulin producing β-cells. Lipids Health Dis, 2022; 21, 138. doi: 10.1186/s12944-022-01751-6 |
[20] |
Schmidt AF, Swerdlow DI, Holmes MV, et al. PCSK9 genetic variants and risk of type 2 diabetes: a mendelian randomisation study. Lancet Diabetes Endocrinol, 2017; 5, 97−105. doi: 10.1016/S2213-8587(16)30396-5 |
[21] |
Fryirs M, Barter PJ, Rye KA. Cholesterol metabolism and pancreatic β-cell function. Curr Opin Lipidol, 2009; 20, 159−64. doi: 10.1097/MOL.0b013e32832ac180 |
[22] |
Khan SU, Rahman H, Okunrintemi V, et al. Association of lowering low-density lipoprotein cholesterol with contemporary lipid-lowering therapies and risk of diabetes mellitus: a systematic review and meta-analysis. J Am Heart Assoc, 2019; 8, e011581. doi: 10.1161/JAHA.118.011581 |
[23] |
Ference BA, Robinson JG, Brook RD, et al. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N Engl J Med, 2016; 375, 2144−53. doi: 10.1056/NEJMoa1604304 |
[24] |
Lotta LA, Sharp SJ, Burgess S, et al. Association between low-density lipoprotein cholesterol-lowering genetic variants and risk of type 2 diabetes: a meta-analysis. JAMA, 2016; 316, 1383−91. doi: 10.1001/jama.2016.14568 |
[25] |
Swerdlow DI, Preiss D, Kuchenbaecker KB, et al. HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials. Lancet, 2015; 385, 351−61. doi: 10.1016/S0140-6736(14)61183-1 |
[26] |
Bonnefond A, Yengo L, Le May C, et al. The loss-of-function PCSK9 p. R46L genetic variant does not alter glucose homeostasis. Diabetologia, 2015; 58, 2051−5. doi: 10.1007/s00125-015-3659-8 |
[27] |
Basiak M, Hachula M, Kosowski M, et al. Effect of PCSK9 inhibitors on hemostasis in patients with isolated hypercholesterolemia. J Clin Med, 2022; 11, 2542. doi: 10.3390/jcm11092542 |
[28] |
Ramin-Mangata S, Wargny M, Pichelin M, et al. Circulating PCSK9 levels are not associated with the conversion to type 2 diabetes. Atherosclerosis, 2020; 293, 49−56. doi: 10.1016/j.atherosclerosis.2019.11.027 |
[29] |
Sabatine MS, Leiter LA, Wiviott SD, et al. Cardiovascular safety and efficacy of the PCSK9 inhibitor evolocumab in patients with and without diabetes and the effect of evolocumab on glycaemia and risk of new-onset diabetes: a prespecified analysis of the FOURIER randomised controlled trial. Lancet Diabetes Endocrinol, 2017; 5, 941−50. doi: 10.1016/S2213-8587(17)30313-3 |
[30] |
Ridker PM, Revkin J, Amarenco P, et al. Cardiovascular efficacy and safety of bococizumab in high-risk patients. N Engl J Med, 2017; 376, 1527−39. doi: 10.1056/NEJMoa1701488 |
[31] |
Littell RC, Pendergast J, Natarajan R. Modelling covariance structure in the analysis of repeated measures data. Stat Med, 2000; 19, 1793−819. doi: 10.1002/1097-0258(20000715)19:13<1793::AID-SIM482>3.0.CO;2-Q |
[32] |
Bland JM, Altman DG. Multiple significance tests: the Bonferroni method. BMJ, 1995; 310, 170. doi: 10.1136/bmj.310.6973.170 |
[33] |
Koren MJ, Sabatine MS, Giugliano RP, et al. Long-term low-density lipoprotein cholesterol-lowering efficacy, persistence, and safety of evolocumab in treatment of hypercholesterolemia: results up to 4 years from the open-label OSLER-1 extension study. JAMA Cardiol, 2017; 2, 598−607. doi: 10.1001/jamacardio.2017.0747 |
[34] |
Ray KK, Colhoun HM, Szarek M, et al. Effects of alirocumab on cardiovascular and metabolic outcomes after acute coronary syndrome in patients with or without diabetes: a prespecified analysis of the ODYSSEY OUTCOMES randomised controlled trial. Lancet Diabetes Endocrinol, 2019; 7, 618−28. doi: 10.1016/S2213-8587(19)30158-5 |
[35] |
Leiter LA, Tinahones FJ, Karalis DG, et al. Alirocumab safety in people with and without diabetes mellitus: pooled data from 14 ODYSSEY trials. Diabet Med, 2018; 35, 1742−51. doi: 10.1111/dme.13817 |
[36] |
Colhoun HM, Ginsberg HN, Robinson JG, et al. No effect of PCSK9 inhibitor alirocumab on the incidence of diabetes in a pooled analysis from 10 ODYSSEY Phase 3 studies. Eur Heart J, 2016; 37, 2981−9. doi: 10.1093/eurheartj/ehw292 |
[37] |
Leiter LA, Müller-Wieland D, Baccara-Dinet MT, et al. Efficacy and safety of alirocumab in people with prediabetes vs those with normoglycaemia at baseline: a pooled analysis of 10 phase III ODYSSEY clinical trials. Diabet Med, 2018; 35, 121−30. doi: 10.1111/dme.13450 |
[38] |
Monami M, Sesti G, Mannucci E. PCSK9 inhibitor therapy: a systematic review and meta-analysis of metabolic and cardiovascular outcomes in patients with diabetes. Diabetes Obes Metab, 2019; 21, 903−8. doi: 10.1111/dom.13599 |
[39] |
Chen T, Wang ZW, Xie J, et al. Efficacy and safety of PCSK9 inhibitors in patients with diabetes: a systematic review and meta-analysis. Nutr Metab Cardiovasc Dis, 2023; 33, 1647−61. doi: 10.1016/j.numecd.2023.05.033 |
[40] |
Peyot ML, Roubtsova A, Lussier R, et al. Substantial PCSK9 inactivation in β-cells does not modify glucose homeostasis or insulin secretion in mice. Biochim Biophys Acta (BBA)-Mol Cell Biol Lipids, 2021; 1866, 158968. |
[41] |
Ramin-Mangata S, Thedrez A, Nativel B, et al. Effects of proprotein convertase subtilisin kexin type 9 modulation in human pancreatic beta cells function. Atherosclerosis, 2021; 326, 47−55. doi: 10.1016/j.atherosclerosis.2021.03.044 |
[42] |
Sattar N, Preiss D, Robinson JG, et al. Lipid-lowering efficacy of the PCSK9 inhibitor evolocumab (AMG 145) in patients with type 2 diabetes: a meta-analysis of individual patient data. Lancet Diabetes Endocrinol, 2016; 4, 403−10. doi: 10.1016/S2213-8587(16)00003-6 |
[43] |
Lee J, Hegele RA. PCSK9 inhibition and diabetes: turning to Mendel for clues. Lancet Diabetes Endocrinol, 2017; 5, 78−9. doi: 10.1016/S2213-8587(16)30398-9 |
[44] |
de Carvalho LSF, Campos AM, Sposito AC. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors and incident type 2 diabetes: a systematic review and meta-analysis with over 96, 000 patient-years. Diabetes Care, 2018; 41, 364−7. doi: 10.2337/dc17-1464 |
[45] |
Goldman A, Raschi E, Cukierman-Yaffe T, et al. Hyperglycaemic disorders associated with PCSK9 inhibitors: a real-world, pharmacovigilance study. Eur J Prev Cardiol, 2022; 29, 1334−42. doi: 10.1093/eurjpc/zwab209 |
[46] |
Ference BA, Holmes MV, Smith GD. Using mendelian randomization to improve the design of randomized trials. Cold Spring Harb Perspect Med, 2021; 11, a040980. doi: 10.1101/cshperspect.a040980 |