[1] |
Srivastava U, Sarkar ME, Kumar A, et al. Comparison of clonidine and dexmedetomidine for short-term sedation of intensive care unit patients. Indian J Crit Care Med, 2014; 18, 431−6. doi: 10.4103/0972-5229.136071 |
[2] |
Cruickshank M, Henderson L, MacLennan G, et al. Alpha-2 agonists for sedation of mechanically ventilated adults in intensive care units: a systematic review. Health Technol Assess, 2016; 20, 1−117. |
[3] |
Patel SB, Kress JP. Sedation and analgesia in the mechanically ventilated patient. Am J Respir Crit Care Med, 2012; 185, 486−97. doi: 10.1164/rccm.201102-0273CI |
[4] |
Barr J, Fraser GL, Puntillo K, et al. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. Crit Care Med, 2013; 41, 263−306. doi: 10.1097/CCM.0b013e3182783b72 |
[5] |
Hoy SM, Keating GM. Dexmedetomidine: a review of its use for sedation in mechanically ventilated patients in an intensive care setting and for procedural sedation. Drugs, 2011; 71, 1481−501. doi: 10.2165/11207190-000000000-00000 |
[6] |
Electronic Medicines Compendium. Dexdor 100 Micrograms/ml Concentrate for Solution for Infusion: Summary of Product Characteristics. Leatherhead: Electronic Medicines Compendium; 2015. www.medicines.org.uk/emc/medicine/25043 (accessed April 2015). |
[7] |
Ihmsen H, Saari TI. Dexmedetomidine. Pharmacokinetics and pharmacodynamic. Anaesthesist, 2012; 61, 1059−66. doi: 10.1007/s00101-012-2114-1 |
[8] |
Kim SH, Jun JH, Oh JE, et al. Renoprotective effects of dexmedetomidine against ischemia-reperfusion injury in streptozotocin-induced diabetic rats. PLoS One, 2018; 13, e0198307. |
[9] |
Gu J, Sun P, Zhao H, et al. Dexmedetomidine provides renoprotection against ischemia-reperfusion injury in mice. Crit Care, 2011; 15, R153. |
[10] |
Zhang W, Zhang JQ, Meng FM, et al. Dexmedetomidine protects against lung ischemia-reperfusion injury by the PI3K/Akt/HIF-1α signaling pathway. J Anesth, 2016; 30, 826−33. doi: 10.1007/s00540-016-2214-1 |
[11] |
Rehman K, Akash MSH. Mechanism of generation of oxidative stress and pathophysiology of type 2 diabetes mellitus: how are they interlinked? J Cell Biochem, 2017; 118, 3577−85. doi: 10.1002/jcb.26097 |
[12] |
He T, Guan X, Wang S, et al. Resveratrol prevents high glucose-induced epithelial-mesenchymal transition in renal tubular epithelial cells by inhibiting NADPH oxidase/ROS/ERK pathway. Mol Cell Endocrinol, 2015; 402, 13−20. doi: 10.1016/j.mce.2014.12.010 |
[13] |
Li Y, Sun Y, Liu F, et al. Norcantharidin inhibits renal interstitial fibrosis by blocking the tubular epithelial-mesenchymal transition. PLoS One, 2013; 8, e66356. doi: 10.1371/journal.pone.0066356 |
[14] |
Xie F, Zhu J, Hou B, et al. Inhibition of NF-κB activation improves insulin resistance of L6 cells. Endocr J, 2017; 64, 685-93. |
[15] |
Li X, Wang L, Ma H. Betaine alleviates high glucose-induced mesangial cell proliferation by inhibiting cell proliferation and extracellular matrix deposition via the AKT/ERK1/2/p38 MAPK pathway. Mol Med Rep, 2019; 20, 1754−60. doi: 10.3892/mmr.2019.10391 |
[16] |
Xue M, Cheng Y, Han F, et al. Triptolide attenuates renal tubular epithelial-mesenchymal transition via the miR-188-5p-mediated PI3K/AKT pathway in diabetic kidney disease. Int J Biol Sci, 2018; 14, 1545−57. doi: 10.7150/ijbs.24032 |
[17] |
Louis K, Hertig A. How tubular epithelial cells dictate the rate of renal fibrogenesis? World J Nephrol, 2015; 4, 367−73. doi: 10.5527/wjn.v4.i3.367 |