[1] |
Mishra RK, Goud KY, Li ZH, et al. Continuous opioid monitoring along with nerve agents on a wearable microneedle sensor array. J Am Chem Soc, 2020; 142, 5991−5. doi: 10.1021/jacs.0c01883 |
[2] |
Huffman MA, Fryszkowska A, Alvizo O, et al. Design of an in vitro biocatalytic cascade for the manufacture of islatravir. Science, 2019; 366, 1255−9. doi: 10.1126/science.aay8484 |
[3] |
Jiang DW, Ni DL, Rosenkrans ZT, et al. Nanozyme: new horizons for responsive biomedical applications. Chem Soc Rev, 2019; 48, 3683−704. doi: 10.1039/C8CS00718G |
[4] |
Huang L, Niu YS, Li RG, et al. VOx quantum dots with multienzyme-mimic activities and the application in constructing a three-dimensional (3D) coordinate system for accurate discrimination of the hydrogen peroxide over a broad concentration range. Anal Chem, 2019; 91, 5753−61. doi: 10.1021/acs.analchem.8b05923 |
[5] |
Wu JJX, Wang XY, Wang Q, et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev, 2019; 48, 1004−76. doi: 10.1039/C8CS00457A |
[6] |
Zhang P, Sun DR, Cho A, et al. Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. Nat Commun, 2019; 10, 940. doi: 10.1038/s41467-019-08731-y |
[7] |
Liang MM, Yan XY. Nanozymes: From new concepts, mechanisms, and standards to applications. Accounts Chem Res, 2019; 52, 2190−200. doi: 10.1021/acs.accounts.9b00140 |
[8] |
Sun HJ, Zhou Y, Ren JS, et al. Carbon nanozymes: Enzymatic properties, catalytic mechanism, and applications. Angew Chem Int Ed, 2018; 57, 9224−37. doi: 10.1002/anie.201712469 |
[9] |
Sun HJ, Zhao AD, Gao N, et al. Deciphering a nanocarbon-based artificial peroxidase: Chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots. Angew Chem Int Ed, 2015; 54, 7176−80. doi: 10.1002/anie.201500626 |
[10] |
Ding H, Hu B, Zhang B, et al. Carbon-based nanozymes for biomedical applications. Nano Res, 2021; 14, 570−83. doi: 10.1007/s12274-020-3053-9 |
[11] |
Ariyanto T, Zhang GR, Riyahi F, et al. Controlled synthesis of core-shell carbide-derived carbons through in situ generated chlorine. Carbon, 2017; 115, 422−9. doi: 10.1016/j.carbon.2017.01.032 |
[12] |
Wu J, Zhang XX, Li Z, et al. Toward high-performance capacitive potassium-ion storage: A superior anode material from silicon carbide-derived carbon with a well-developed pore structure. Adv Funct Mater, 2020; 30, 2004348. doi: 10.1002/adfm.202004348 |
[13] |
Lukatskaya MR, Halim J, Dyatkin B, et al. Room-temperature carbide-derived carbon synthesis by electrochemical etching of MAX phases. Angew Chem Int Ed, 2014; 53, 4877−80. doi: 10.1002/anie.201402513 |
[14] |
Zhao M, Sedran M, Ling Z, et al. Synthesis of carbon/sulfur nanolaminates by electrochemical extraction of titanium from Ti2SC. Angew Chem Int Ed, 2015; 54, 4810−4. doi: 10.1002/anie.201500110 |
[15] |
Fang YF, Yang XC, Chen T, et al. Two-dimensional titanium carbide (MXene)-based solid-state electrochemiluminescent sensor for label-free single-nucleotide mismatch discrimination in human urine. Sensor Actuat B Chem, 2018; 263, 400−7. doi: 10.1016/j.snb.2018.02.102 |
[16] |
Huang HS, Jiang X, Li NJ, et al. Noble-metal-free ultrathin MXene coupled with In2S3 nanoflakes for ultrafast photocatalytic reduction of hexavalent chromium. Appl Catal B:Environ, 2021; 284, 119754. doi: 10.1016/j.apcatb.2020.119754 |
[17] |
Li YB, Li M, Lu J, et al. Single-atom-thick active layers realized in nanolaminated Ti3(AlxCu1-x)C2 and its artificial enzyme behavior. ACS Nano, 2019; 13, 9198−205. doi: 10.1021/acsnano.9b03530 |
[18] |
Fashandi H, Dahlqvist M, Lu J, et al. Synthesis of Ti3AuC2, Ti3Au2C2 and Ti3IrC2 by noble metal substitution reaction in Ti3SiC2 for high-temperature-stable Ohmic contacts to SiC. Nat Mater, 2017; 16, 814−8. doi: 10.1038/nmat4896 |
[19] |
Chai JD, Head-Gordon M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys, 2008; 10, 6615−20. doi: 10.1039/b810189b |
[20] |
Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys Chem Chem Phys, 2005; 7, 3297−305. doi: 10.1039/b508541a |
[21] |
Lu T, Chen FW. Multiwfn: A multifunctional wavefunction analyzer. J Comput Chem, 2012; 33, 580−92. doi: 10.1002/jcc.22885 |
[22] |
Bader RFW, Henneker WH, Cade PE. Molecular charge distributions and chemical binding. J Chern Phys, 1967; 47, 3341−63. |
[23] |
Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 16 (Revision B. 01). Wallingford, CT: Gaussian, Inc. , 2016. |
[24] |
Feng AH, Yu Y, Wang Y, et al. Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2. Mater Des, 2017; 114, 161−6. doi: 10.1016/j.matdes.2016.10.053 |
[25] |
Fang YF, Liu ZC, Han JR, et al. High-performance electrocatalytic conversion of N2 to NH3 using oxygen-vacancy-rich TiO2 in situ grown on Ti3C2Tx MXene. Adv Energy Mater, 2019; 9, 1803406. doi: 10.1002/aenm.201803406 |
[26] |
Zhao Z, Yuan ZK, Fang ZS, et al. In situ activating strategy to significantly boost oxygen electrocatalysis of commercial carbon cloth for flexible and rechargeable Zn-Air batteries. Adv Sci, 2018; 5, 1800760. doi: 10.1002/advs.201800760 |
[27] |
Pan L, Wang YX, Hu H, et al. 3D self-assembly synthesis of hierarchical porous carbon from petroleum asphalt for supercapacitors. Carbon, 2018; 134, 345−53. doi: 10.1016/j.carbon.2018.04.008 |
[28] |
Xue Q, Zhang HJ, Zhu MS, et al. Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging. Adv Mater, 2017; 29, 1604847. doi: 10.1002/adma.201604847 |
[29] |
Ghassemi H, Harlow W, Mashtalir O, et al. In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti3C2 and formation of carbon-supported TiO2. J Mater Chem A, 2014; 2, 14339−43. doi: 10.1039/C4TA02583K |
[30] |
Hu MH, Korschelt K, Daniel P, et al. Fibrous nanozyme dressings with catalase-like activity for H2O2 reduction to promote wound healing. ACS Appl Mater Interfaces, 2017; 9, 38024−31. doi: 10.1021/acsami.7b12212 |