[1] |
World Health Organization. Global tuberculosis report 2023. World Health Organization. 2023. |
[2] |
Cambau E, Drancourt M. Steps towards the discovery of Mycobacterium tuberculosis by Robert Koch, 1882. Clin Microbiol Infect, 2014; 20, 196−201. |
[3] |
Bloom BR. A half-century of research on tuberculosis: successes and challenges. J Exp Med, 2023; 220, e20230859. |
[4] |
Nahid P, Mase SR, Migliori GB, et al. Treatment of drug-resistant Tuberculosis. An official ATS/CDC/ERS/IDSA clinical practice guideline. Am J Respir Crit Care Med, 2019; 200, e93−e142. doi: 10.1164/rccm.201909-1874ST |
[5] |
Floyd K, Glaziou P, Zumla A, et al. The global tuberculosis epidemic and progress in care, prevention, and research: an overview in year 3 of the End TB era. Lancet Respir Med, 2018; 6, 299−314. doi: 10.1016/S2213-2600(18)30057-2 |
[6] |
McQuaid CF, McCreesh N, Read JM, et al. The potential impact of COVID-19-related disruption on tuberculosis burden. Eur Respir J, 2020; 56, 2001718. doi: 10.1183/13993003.01718-2020 |
[7] |
Dheda K, Mirzayev F, Cirillo DM, et al. Multidrug-resistant tuberculosis. Nat Rev Dis Primers, 2024; 10, 22. |
[8] |
Nair A, Greeny A, Nandan A, et al. Advanced drug delivery and therapeutic strategies for tuberculosis treatment. J Nanobiotechnol, 2023; 21, 414. doi: 10.1186/s12951-023-02156-y |
[9] |
Dartois VA, Rubin EJ. Anti-tuberculosis treatment strategies and drug development: challenges and priorities. Nat Rev Microbiol, 2022; 20, 685−701. doi: 10.1038/s41579-022-00731-y |
[10] |
Peloquin CA, Davies GR. The treatment of tuberculosis. Clin Pharmacol Ther, 2021; 110, 1455−66. doi: 10.1002/cpt.2261 |
[11] |
Rocha DMGC, Viveiros M, Saraiva M, et al. The neglected contribution of streptomycin to the tuberculosis drug resistance problem. Gene, 2021; 12, 2003. doi: 10.3390/genes12122003 |
[12] |
Mondoni M, Saderi L, Sotgiu G. Novel treatments in multidrug-resistant tuberculosis. Curr Opin Pharmacol, 2021; 59, 103−15. doi: 10.1016/j.coph.2021.05.007 |
[13] |
Tabernero P, Newton PN. Estimating the prevalence of poor-quality anti-TB medicines: a neglected risk for global TB control and resistance. BMJ Glob Health, 2023; 8, e012039. doi: 10.1136/bmjgh-2023-012039 |
[14] |
Zainabadi K, Vilbrun SC, Mathurin LD, et al. A bedaquiline, pyrazinamide, levofloxacin, linezolid, and clofazimine second-line regimen for tuberculosis displays similar early bactericidal activity as the standard rifampin-based first-line regimen. J Infect Dis, 2024; 230, e447−56. |
[15] |
Tiberi S, Scardigli A, Centis R, et al. Classifying new anti-tuberculosis drugs: rationale and future perspectives. Int J Infect Dis, 2017; 56, 181−4. doi: 10.1016/j.ijid.2016.10.026 |
[16] |
Pontali E, Sotgiu G, D'Ambrosio L, et al. Bedaquiline and multidrug-resistant tuberculosis: a systematic and critical analysis of the evidence. Eur Respir J, 2016; 47, 394−402. doi: 10.1183/13993003.01891-2015 |
[17] |
Lange C, Chesov D, Heyckendorf J, et al. Drug-resistant tuberculosis: an update on disease burden, diagnosis and treatment. Respirology, 2018; 23, 656−73. |
[18] |
Dartois V, Dick T. Therapeutic developments for tuberculosis and nontuberculous mycobacterial lung disease. Nat Rev Drug Discov, 2024; 23(5): 381-403. |
[19] |
Garcia-Prats AJ, Draper HR, Finlayson H, et al. Clinical and cardiac safety of long-term levofloxacin in children treated for multidrug-resistant tuberculosis. Clin Infect Dis, 2018; 67, 1777−80. doi: 10.1093/cid/ciy416 |
[20] |
Ali AM, Radtke KK, Hesseling AC, et al. QT interval prolongation with one or more QT-prolonging agents used as part of a multidrug regimen for rifampicin-resistant tuberculosis treatment: findings from two pediatric studies. Antimicrob Agents Chemother, 2023; 67, e0144822. doi: 10.1128/aac.01448-22 |
[21] |
Xia H, Zheng Y, Liu DX, et al. Strong increase in moxifloxacin resistance rate among multidrug-resistant Mycobacterium tuberculosis isolates in China, from 2007 to 2013. Microbiol Spectr, 2021; 9, e0040921. doi: 10.1128/Spectrum.00409-21 |
[22] |
Kadura S, King N, Nakhoul M, et al. Systematic review of mutations associated with resistance to the new and repurposed Mycobacterium tuberculosis drugs bedaquiline, clofazimine, linezolid, delamanid and pretomanid. J Antimicrob Chemother, 2020; 75, 2031−43. |
[23] |
Working Group on New Drugs. TBI-223. https://www.newtbdrugs.org/pipeline/compound/tbi-223. [2024-6-3]. |
[24] |
Choi Y, Lee SW, Kim A, et al. Safety, tolerability and pharmacokinetics of 21 day multiple oral administration of a new oxazolidinone antibiotic, LCB01-0371, in healthy male subjects. J Antimicrob Chemother, 2018; 73, 183−90. doi: 10.1093/jac/dkx367 |
[25] |
Wallis RS, Dawson R, Friedrich SO, et al. Mycobactericidal activity of sutezolid (PNU-100480) in sputum (EBA) and blood (WBA) of patients with pulmonary tuberculosis. PLoS One, 2014; 9, e94462. doi: 10.1371/journal.pone.0094462 |
[26] |
Xu J, Converse PJ, Upton AM, et al. Comparative efficacy of the novel Diarylquinoline TBAJ-587 and Bedaquiline against a Resistant Rv0678 mutant in a mouse model of tuberculosis. Antimicrob Agents Chemother, 2021; 65, e02418−20. |
[27] |
Sarathy JP, Ganapathy US, Zimmerman MD, et al. TBAJ-876, a 3, 5-Dialkoxypyridine analogue of bedaquiline, is active against Mycobacterium abscessus. Antimicrob Agents Chemother, 2020; 64, e02404−19. |
[28] |
Zheng L, Wang H, Qi X et al. Sudapyridine (WX-081) antibacterial activity against Mycobacterium avium, Mycobacterium abscessus, and Mycobacterium chelonae in vitro and in vivo. mSphere, 2024; 9, e0051823. |
[29] |
Khoshnood S, Taki E, Sadeghifard N, et al. Mechanism of action, resistance, synergism, and clinical implications of Delamanid against multidrug-resistant Mycobacterium tuberculosis. Front Microbiol, 2021; 12, 717045. doi: 10.3389/fmicb.2021.717045 |
[30] |
von Groote-Bidlingmaier F, Patientia R, Sanchez E, et al. Efficacy and safety of delamanid in combination with an optimised background regimen for treatment of multidrug-resistant tuberculosis: a multicentre, randomised, double-blind, placebo-controlled, parallel group phase 3 trial. Lancet Respir Med, 2019; 7, 249−59. doi: 10.1016/S2213-2600(18)30426-0 |
[31] |
Singh R, Manjunatha U, Boshoff HIM, et al. PA-824 kills nonreplicating Mycobacterium tuberculosis intracellular NO release. Science, 2008; 322, 1392−5. doi: 10.1126/science.1164571 |
[32] |
Tasneen R, Williams K, Amoabeng O, et al. Contribution of the nitroimidazoles PA-824 and TBA-354 to the activity of novel regimens in murine models of tuberculosis. Antimicrob Agents Chemother, 2015; 59, 129−35. |
[33] |
Lee M, Mok J, Kim DK, et al. Delamanid, linezolid, levofloxacin, and pyrazinamide for the treatment of patients with fluoroquinolone-sensitive multidrug-resistant tuberculosis (treatment shortening of MDR-TB using existing and new drugs, MDR-END): study protocol for a phase II/III, multicenter, randomized, open-label clinical trial. Trials, 2019; 20, 57. doi: 10.1186/s13063-018-3053-1 |
[34] |
Occhineri S, Matucci T, Rindi L, et al. Pretomanid for tuberculosis treatment: an update for clinical purposes. Curr Res Pharmacol Drug Discov, 2022; 3, 100128. doi: 10.1016/j.crphar.2022.100128 |
[35] |
Stadler JAM, Maartens G, Meintjes G, et al. Clofazimine for the treatment of tuberculosis. Front Pharmacol, 2023; 14, 1100488. doi: 10.3389/fphar.2023.1100488 |
[36] |
Yang XY, Li CR, Wang XK, et al. An update on the clinical pipelines of new antibacterial drugs developed in China. Engineering, 2024; 38, 52−68. |
[37] |
Ding YM, Zhu H, Fu L, et al. Superior efficacy of a TBI-166, bedaquiline, and pyrazinamide combination regimen in a murine model of tuberculosis. Antimicrob Agents Chemother, 2022; 66, e0065822. doi: 10.1128/aac.00658-22 |
[38] |
Xu J, Wang B, Fu L, et al. In Vitro and In Vivo activities of the Riminophenazine TBI-166 against Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2019; 63, e02155−18. |
[39] |
Imran M, Khan SA, Asdaq SMB, et al. An insight into the discovery, clinical studies, compositions, and patents of macozinone: a drug targeting the DprE1 enzyme of Mycobacterium tuberculosis. J Infect Public Health, 2022; 15, 1097−107. doi: 10.1016/j.jiph.2022.08.016 |
[40] |
Ejalonibu MA, Ogundare SA, Elrashedy AA, et al. Drug discovery for Mycobacterium tuberculosis using structure-based computer-aided drug design approach. Int J Mol Sci, 2021; 22, 13259. |
[41] |
Bruhn DF, Scherman MS, Liu JY, et al. In vitro and in vivo evaluation of synergism between anti-tubercular spectinamides and non-classical tuberculosis antibiotics. Sci Rep, 2015; 5, 13985. doi: 10.1038/srep13985 |
[42] |
Liu JY, Bruhn DF, Lee RB, et al. Structure-activity relationships of spectinamide antituberculosis agents: a dissection of ribosomal inhibition and native efflux avoidance contributions. ACS Infect Dis, 2017; 3, 72−88. doi: 10.1021/acsinfecdis.6b00158 |
[43] |
Cohen KA, Manson AL, Desjardins CA, et al. Deciphering drug resistance in Mycobacterium tuberculosis using whole-genome sequencing: progress, promise, and challenges. Genome Med, 2019; 11, 45. doi: 10.1186/s13073-019-0660-8 |
[44] |
Vīksna A, Sadovska D, Berge I, et al. Genotypic and phenotypic comparison of drug resistance profiles of clinical multidrug-resistant Mycobacterium tuberculosis isolates using whole genome sequencing in Latvia. BMC Infect Dis, 2023; 23, 638. |
[45] |
Working Group for New TB Drugs. Discovery. https://www.newtbdrugs.org/pipeline/discovery. [2024-6-3]. |
[46] |
Sethiya JP, Sowards MA, Jackson M, et al. MmpL3 inhibition: a new approach to treat nontuberculous mycobacterial infections. Int J Mol Sci, 2020; 21, 6202. doi: 10.3390/ijms21176202 |
[47] |
Sarathy JP, Zimmerman MD, Gengenbacher M, et al. Mycobacterium tuberculosis DprE1 Inhibitor OPC-167832 is active against Mycobacterium abscessus in vitro. Antimicrob Agents Chemother, 2022; 66, e0123722. doi: 10.1128/aac.01237-22 |
[48] |
Rudraraju RS, Daher SS, Gallardo-Macias R, et al. Mycobacterium tuberculosis KasA as a drug target: structure-based inhibitor design. Front Cell Infect Microbiol, 2022; 12, 1008213. |
[49] |
Fang C, Lee KK, Nietupski R, et al. Discovery of heterocyclic replacements for the coumarin core of anti-tubercular FadD32 inhibitors. Bioorg Med Chem Lett, 2018; 28, 3529−33. doi: 10.1016/j.bmcl.2018.09.037 |
[50] |
Aggarwal A, Parai MK, Shetty N, et al. Development of a novel lead that targets M. tuberculosis polyketide synthase 13. Cell, 2017; 170, 249-259. e25. |
[51] |
Beites T, O'Brien K, Tiwari D, et al. Plasticity of the Mycobacterium tuberculosis respiratory chain and its impact on tuberculosis drug development. Nat Commun, 2019; 10, 4970. doi: 10.1038/s41467-019-12956-2 |
[52] |
Jeffreys LN, Ardrey A, Hafiz TA, et al. Identification of 2-aryl-quinolone inhibitors of cytochrome bd and chemical validation of combination strategies for respiratory inhibitors against Mycobacterium tuberculosis. ACS Infect Dis, 2023; 9, 221−38. doi: 10.1021/acsinfecdis.2c00283 |
[53] |
Lee BS, Hards K, Engelhart CA, et al. Dual inhibition of the terminal oxidases eradicates antibiotic-tolerant Mycobacterium tuberculosis. EMBO Mol Med, 2021; 13, e13207. |
[54] |
Li XF, Hernandez V, Rock FL, et al. Discovery of a Potent and Specific M. tuberculosis Leucyl-tRNA Synthetase Inhibitor: (S)-3-(Aminomethyl)-4-chloro-7-(2-hydroxyethoxy)benzo[c][1, 2]oxaborol-1(3H)-ol (GSK656). J Med Chem, 2017; 60, 8011−8026. doi: 10.1021/acs.jmedchem.7b00631 |
[55] |
Green SR, Davis SH, Damerow S, et al. Lysyl-tRNA synthetase, a target for urgently needed M. tuberculosis drugs. Nat Commun, 2022; 13, 5992. doi: 10.1038/s41467-022-33736-5 |
[56] |
Abrahams KA, Cox JAG, Fütterer K, et al. Inhibiting mycobacterial tryptophan synthase by targeting the inter-subunit interface. Sci Rep, 2017; 7, 9430. doi: 10.1038/s41598-017-09642-y |
[57] |
Brown KL, Wilburn KM, Montague CR, et al. Cyclic AMP-mediated inhibition of cholesterol catabolism in Mycobacterium tuberculosis by the novel drug candidate GSK2556286. Antimicrob Agents Chemother, 2023; 67, e0129422. |
[58] |
Hoi DM, Junker S, Junk L, et al. Clp-targeting BacPROTACs impair mycobacterial proteostasis and survival. Cell, 2023; 186, 2176-2192. e22. |
[59] |
Weston DJ, Thomas S, Boyle GW, et al. Alpibectir: early qualitative and quantitative metabolic profiling from a first-time-in-human study by combining 19F-NMR (Nuclear Magnetic Resonance), 1H-NMR, and high-resolution mass spectrometry analyses. Drug Metab Dispos, 2024; 52, 858−74. doi: 10.1124/dmd.124.001562 |
[60] |
Won HI, Zinga S, Kandror O, et al. Targeted protein degradation in mycobacteria uncovers antibacterial effects and potentiates antibiotic efficacy. Nat Commun, 2024; 15, 4065. doi: 10.1038/s41467-024-48506-8 |
[61] |
Davies GR, Aston S. Update on drug treatments for multidrug resistant tuberculosis. Curr Opin Infect Dis, 2023; 36, 132−9. |
[62] |
Dookie N, Ngema SL, Perumal R, et al. The changing paradigm of drug-resistant tuberculosis treatment: successes, pitfalls, and future perspectives. Clin Microbiol Rev, 2022; 35, e0018019. doi: 10.1128/cmr.00180-19 |
[63] |
Nyang'wa BT, Berry C, Kazounis E, et al. A 24-week, all-oral regimen for rifampin-resistant tuberculosis. N Engl J Med, 2022; 387(25): 2331-43. |
[64] |
Conradie F, Bagdasaryan TR, Borisov S, et al. Bedaquiline-Pretomanid-linezolid regimens for drug-resistant tuberculosis. N Engl J Med, 2022; 387, 810−23. doi: 10.1056/NEJMoa2119430 |
[65] |
Dorman SE, Nahid P, Kurbatova EV, et al. Four-month Rifapentine regimens with or without moxifloxacin for tuberculosis. N Engl J Med, 2021; 384, 1705−18. doi: 10.1056/NEJMoa2033400 |
[66] |
Yu T, Vollenweider D, Varadhan R, et al. Support of personalized medicine through risk-stratified treatment recommendations: an environmental scan of clinical practice guidelines. BMC Med, 2013; 11, 7. doi: 10.1186/1741-7015-11-7 |
[67] |
Imperial MZ, Phillips PPJ, Nahid P, et al. Precision-enhancing risk stratification tools for selecting optimal treatment durations in Tuberculosis clinical trials. Am J Respir Crit Care Med, 2021; 204, 1086−96. doi: 10.1164/rccm.202101-0117OC |
[68] |
Heinrichs MT, Drusano GL, Brown DL, et al. Dose optimization of moxifloxacin and linezolid against tuberculosis using mathematical modeling and simulation. Int J Antimicrob Agents, 2019; 53, 275−83. doi: 10.1016/j.ijantimicag.2018.10.012 |
[69] |
Aguilar Diaz JM, Abulfathi AA, Te Brake LH, et al. New and repurposed drugs for the treatment of active tuberculosis: an update for clinicians. Respiration, 2023; 102, 83−100. |
[70] |
Sturkenboom MGG, Märtson AG, Svensson EM, et al. Population pharmacokinetics and Bayesian dose adjustment to advance TDM of anti-TB drugs. Clin Pharmacokinet, 2021; 60, 685−710. doi: 10.1007/s40262-021-00997-0 |
[71] |
Mi J, Liang Y, Liang JQ, et al. The research progress in immunotherapy of tuberculosis. Front Cell Infect Microbiol, 2021; 11, 763591. doi: 10.3389/fcimb.2021.763591 |
[72] |
Abate G, Hoft DF. Immunotherapy for tuberculosis: future prospects. Immunotargets Ther, 2016; 5, 37−45. |
[73] |
Xiao SF, Zhou T, Pan JH, et al. Identifying autophagy-related genes as potential targets for immunotherapy in tuberculosis. Int Immunopharmacol, 2023; 118, 109956. doi: 10.1016/j.intimp.2023.109956 |
[74] |
Ramos-Espinosa O, Islas-Weinstein L, Peralta-Álvarez MP, et al. The use of immunotherapy for the treatment of tuberculosis. Expert Rev Respir Med, 2018; 12, 427−40. doi: 10.1080/17476348.2018.1457439 |
[75] |
Montoya D, Inkeles MS, Liu PT, et al. IL-32 is a molecular marker of a host defense network in human tuberculosis. Sci Transl Med, 2014; 6, 250ra114. |
[76] |
Campbell GR, Spector SA. Vitamin D inhibits human immunodeficiency virus type 1 and Mycobacterium tuberculosis infection in macrophages through the induction of autophagy. PLoS Pathog, 2012; 8, e1002689. doi: 10.1371/journal.ppat.1002689 |
[77] |
Shi H, Duan JL, Wang JY, et al. 1, 25(OH)2D3 promotes macrophage efferocytosis partly by upregulating ASAP2 transcription via the VDR-bound enhancer region and ASAP2 may affect antiviral immunity. Nutrients, 2022; 14, 4935. doi: 10.3390/nu14224935 |
[78] |
Cai L, Wang GM, Zhang PJ, et al. The progress of the prevention and treatment of Vitamin D to tuberculosis. Front Nutr, 2022; 9, 873890. doi: 10.3389/fnut.2022.873890 |
[79] |
Santos-Mena A, González-Muñiz OE, Jacobo-Delgado YM, et al. Shedding light on vitamin D in tuberculosis: a comprehensive review of clinical trials and discrepancies. Pulm Pharmacol Ther, 2024; 85, 102300. |
[80] |
Wallis RS, Zumla A. Vitamin D as adjunctive host-directed therapy in tuberculosis: a systematic review. Open Forum Infect Dis, 2016; 3, ofw151. doi: 10.1093/ofid/ofw151 |
[81] |
Done MM, Akkerman OW, Al-Kailany W, et al. Corticosteroid therapy for the management of paradoxical inflammatory reaction in patients with pulmonary tuberculosis. Infection, 2020; 48, 641−5. doi: 10.1007/s15010-020-01430-7 |
[82] |
Kalfeist L, Galland L, Ledys F, et al. Impact of glucocorticoid use in oncology in the immunotherapy era. Cells, 2022; 11, 770. doi: 10.3390/cells11050770 |
[83] |
Cain DW, Cidlowski JA. Immune regulation by glucocorticoids. Nat Rev Immunol, 2017; 17, 233−47. doi: 10.1038/nri.2017.1 |
[84] |
Blum CA, Nigro N, Briel M, et al. Adjunct prednisone therapy for patients with community-acquired pneumonia: a multicentre, double-blind, randomised, placebo-controlled trial. Lancet, 2015; 385, 1511−8. doi: 10.1016/S0140-6736(14)62447-8 |
[85] |
Remmelts HHF, Meijvis SCA, Biesma DH, et al. Dexamethasone downregulates the systemic cytokine response in patients with community-acquired pneumonia. Clin Vaccine Immunol, 2012; 19, 1532−8. |
[86] |
Aldea M, Orillard E, Mansi L, et al. How to manage patients with corticosteroids in oncology in the era of immunotherapy? Eur J Cancer, 2020; 141, 239-51. |
[87] |
Prasad K, Singh MB, Ryan H. Corticosteroids for managing tuberculous meningitis. Cochrane Database Syst Rev, 2016; 4, CD002244. |
[88] |
Tiwari D, Martineau AR. Inflammation-mediated tissue damage in pulmonary tuberculosis and host-directed therapeutic strategies. Semin Immunol, 2023; 65, 101672. doi: 10.1016/j.smim.2022.101672 |
[89] |
Tobin DM, Ramakrishnan L. TB: the Yin and Yang of lipid mediators. Curr Opin Pharmacol, 2013; 13, 641−5. doi: 10.1016/j.coph.2013.06.007 |
[90] |
Tobin DM, Roca FJ, Oh S, et al. Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections. Cell, 2012; 148, 434−46. |
[91] |
Morris T, Stables M, Hobbs A, et al. Effects of low-dose aspirin on acute inflammatory responses in humans. J Immunol, 2009; 183, 2089−96. doi: 10.4049/jimmunol.0900477 |
[92] |
Fowler CJ. NSAIDs: eNdocannabinoid stimulating anti-inflammatory drugs? Trends Pharmacol Sci, 2012; 33, 468-73. |
[93] |
Tonby K, Wergeland I, Lieske NV, et al. The COX- inhibitor indomethacin reduces Th1 effector and T regulatory cells in vitro in Mycobacterium tuberculosis infection. BMC Infect Dis, 2016; 16, 599. doi: 10.1186/s12879-016-1938-8 |
[94] |
Vilaplana C, Marzo E, Tapia G, et al. Ibuprofen therapy resulted in significantly decreased tissue bacillary loads and increased survival in a new murine experimental model of active tuberculosis. J Infect Dis, 2013; 208, 199−202. doi: 10.1093/infdis/jit152 |
[95] |
Ju ZR, Li ML, Xu JD, et al. Recent development on COX-2 inhibitors as promising anti-inflammatory agents: the past 10 years. Acta Pharm Sin B, 2022; 12, 2790−807. |
[96] |
Park JH, Shim D, Kim KES, et al. Understanding metabolic regulation between host and pathogens: new opportunities for the development of improved therapeutic strategies against Mycobacterium tuberculosis infection. Front Cell Infect Microbiol, 2021; 11, 635335. doi: 10.3389/fcimb.2021.635335 |
[97] |
Xu YN, Xu SW, Liu P, et al. Suberanilohydroxamic acid as a pharmacological Kruppel-like factor 2 activator that represses vascular inflammation and atherosclerosis. J Am Heart Assoc, 2017; 6, e007134. doi: 10.1161/JAHA.117.007134 |
[98] |
Liao KM, Lee CS, Wu YC, et al. Association between statin use and tuberculosis risk in patients with bronchiectasis: a retrospective population-based cohort study in Taiwan. BMJ Open Respir Res, 2024; 11, e002077. |
[99] |
Parihar SP, Guler R, Khutlang R, et al. Statin therapy reduces the Mycobacterium tuberculosis burden in human macrophages and in mice by enhancing autophagy and phagosome maturation. J Infect Dis, 2014; 209, 754−63. doi: 10.1093/infdis/jit550 |
[100] |
Skerry C, Pinn ML, Bruiners N, et al. Simvastatin increases the in vivo activity of the first-line tuberculosis regimen. J Antimicrob Chemother, 2014; 69, 2453−7. doi: 10.1093/jac/dku166 |
[101] |
Yu XY, Li L, Xia LT, et al. Impact of metformin on the risk and treatment outcomes of tuberculosis in diabetics: a systematic review. BMC Infect Dis, 2019; 19, 859. doi: 10.1186/s12879-019-4548-4 |
[102] |
Novita BD, Ali M, Pranoto A, et al. Metformin induced autophagy in diabetes mellitus - Tuberculosis co-infection patients: a case study. Indian J Tuberc, 2019; 66, 64−9. doi: 10.1016/j.ijtb.2018.04.003 |
[103] |
Ma WQ, Sun XJ, Wang Y, et al. Restoring mitochondrial biogenesis with metformin attenuates β-GP-induced phenotypic transformation of VSMCs into an osteogenic phenotype via inhibition of PDK4/oxidative stress-mediated apoptosis. Mol Cell Endocrinol, 2019; 479, 39−53. doi: 10.1016/j.mce.2018.08.012 |
[104] |
Yew WW, Chang KC, Chan DP, et al. Metformin as a host-directed therapeutic in tuberculosis: is there a promise? Tuberculosis (Edinb), 2019; 115, 76-80. |
[105] |
Kumar NP, Moideen K, Viswanathan V, et al. Elevated levels of matrix metalloproteinases reflect severity and extent of disease in tuberculosis-diabetes co-morbidity and are predominantly reversed following standard anti-tuberculosis or metformin treatment. BMC Infect Dis, 2018; 18, 345. |
[106] |
Singhal A, Jie L, Kumar P, et al. Metformin as adjunct antituberculosis therapy. Sci Transl Med, 2014; 6, 263ra159. |
[107] |
Degner NR, Wang JY, Golub JE, et al. Metformin use reverses the increased mortality associated with diabetes mellitus during tuberculosis treatment. Clin Infect Dis, 2018; 66, 198−205. doi: 10.1093/cid/cix819 |
[108] |
Wallis RS, O'Garra A, Sher A, et al. Host-directed immunotherapy of viral and bacterial infections: past, present and future. Nat Rev Immunol, 2023; 23, 121−33. doi: 10.1038/s41577-022-00734-z |
[109] |
Zhang YR, Liu J, Wang Y, et al. Immunotherapy using IL-2 and GM-CSF is a potential treatment for multidrug-resistant Mycobacterium tuberculosis. Sci China Life Sci, 2012; 55, 800−6. doi: 10.1007/s11427-012-4368-x |
[110] |
Shen H, Min R, Tan Q, et al. The beneficial effects of adjunctive recombinant human interleukin-2 for multidrug resistant tuberculosis. Arch Med Sci, 2015; 11, 584−90. |
[111] |
Nie WJ, Wang J, Zeng JF, et al. Adjunctive interleukin-2 for the treatment of drug-susceptible tuberculosis: a randomized control trial in China. Infection, 2022; 50, 413−21. |
[112] |
Tait D, Diacon A, Borges Á H, et al. Safety and immunogenicity of the H56: IC31 tuberculosis vaccine candidate in adults successfully treated for drug-susceptible pulmonary TB: a phase 1 randomized trial. J Infect Dis, 2024; jiae170. |
[113] |
Pedral-Sampaio DB, Netto EM, Brites C, et al. Use of Rhu-GM-CSF in pulmonary tuberculosis patients: results of a randomized clinical trial. Braz J Infect Dis, 2003; 7, 245−52. |
[114] |
Francisco-Cruz A, Mata-Espinosa D, Ramos-Espinosa O, et al. Efficacy of gene-therapy based on adenovirus encoding granulocyte-macrophage colony-stimulating factor in drug-sensitive and drug-resistant experimental pulmonary tuberculosis. Tuberculosis (Edinb), 2016; 100, 5−14. doi: 10.1016/j.tube.2016.05.015 |
[115] |
Ma YF, Chen HD, Wang YB, et al. Interleukin 24 as a novel potential cytokine immunotherapy for the treatment of Mycobacterium tuberculosis infection. Microbes Infect, 2011; 13, 1099−110. doi: 10.1016/j.micinf.2011.06.012 |
[116] |
Kim SH, Han SY, Azam T, et al. Interleukin-32: a cytokine and inducer of TNFalpha. Immunity, 2005; 22, 131−42. |
[117] |
Bai XY, Shang SB, Henao-Tamayo M, et al. Human IL-32 expression protects mice against a hypervirulent strain of Mycobacterium tuberculosis. Proc Natl Acad Sci USA, 2015; 112, 5111−6. doi: 10.1073/pnas.1424302112 |
[118] |
Okada M, Kita Y, Nakajima T, et al. A novel therapeutic and prophylactic vaccine (HVJ-Envelope / Hsp65 DNA + IL-12 DNA) against tuberculosis using the Cynomolgus monkey model. Procedia Vaccinol, 2010; 2, 34−9. doi: 10.1016/j.provac.2010.03.007 |
[119] |
Chatterjee S, Talaat KR, van Seventer EE, et al. Mycobacteria induce TPL-2 mediated IL-10 in IL-4-generated alternatively activated macrophages. PLoS One, 2017; 12, e0179701. |
[120] |
Sable SB, Posey JE, Scriba TJ. Tuberculosis vaccine development: progress in clinical evaluation. Clin Microbiol Rev, 2019; 33, e00100−19. |
[121] |
Gong WP, Liang Y, Ling YB, et al. Effects of Mycobacterium vaccae vaccine in a mouse model of tuberculosis: protective action and differentially expressed genes. Mil Med Res, 2020; 7, 25. |
[122] |
Efremenko YV, Butov DA, Prihoda ND, et al. Randomized, placebo-controlled phase II trial of heat-killed Mycobacterium vaccae (Longcom batch) formulated as an oral pill (V7). Hum Vaccin Immunother, 2013; 9, 1852−6. |
[123] |
Sharma SK, Katoch K, Sarin R, et al. Efficacy and safety of Mycobacterium indicus pranii as an adjunct therapy in category II pulmonary tuberculosis in a randomized trial. Sci Rep, 2017; 7, 3354. doi: 10.1038/s41598-017-03514-1 |
[124] |
von Reyn CF, Lahey T, Arbeit RD, et al. Safety and immunogenicity of an inactivated whole cell tuberculosis vaccine booster in adults primed with BCG: a randomized, controlled trial of DAR-901. PLoS One, 2017; 12, e0175215. doi: 10.1371/journal.pone.0175215 |
[125] |
Cardona PJ. RUTI: a new chance to shorten the treatment of latent tuberculosis infection. Tuberculosis (Edinb), 2006; 86, 273−89. doi: 10.1016/j.tube.2006.01.024 |
[126] |
Yan SY, Liu RQ, Mao MY, et al. Therapeutic effect of Bacillus Calmette-Guerin polysaccharide nucleic acid on mast cell at the transcriptional level. PeerJ, 2019; 7, e7404. |
[127] |
Sagawa ZK, Goman C, Frevol A, et al. Safety and immunogenicity of a thermostable ID93 + GLA-SE tuberculosis vaccine candidate in healthy adults. Nat Commun, 2023; 14, 1138. doi: 10.1038/s41467-023-36789-2 |
[128] |
Liang Y, Zhang XY, Bai XJ, et al. Immunogenicity and therapeutic effects of a Mycobacterium tuberculosis rv2190c DNA vaccine in mice. BMC Immunol, 2017; 18, 11. doi: 10.1186/s12865-017-0196-x |
[129] |
Liang Y, Cui L, Xiao L, et al. Immunotherapeutic effects of different doses of Mycobacterium tuberculosis ag85a/b DNA vaccine delivered by electroporation. Front Immunol, 2022; 13, 876579. doi: 10.3389/fimmu.2022.876579 |
[130] |
Wang N, Liang Y, Ma QQ, et al. Mechanisms of ag85a/b DNA vaccine conferred immunotherapy and recovery from Mycobacterium tuberculosis-induced injury. Immun Inflamm Dis, 2023; 11, e854. |
[131] |
Parida SK, Madansein R, Singh N, et al. Cellular therapy in tuberculosis. Int J Infect Dis, 2015; 32, 32−8. doi: 10.1016/j.ijid.2015.01.016 |
[132] |
Zou S, Xiang YN, Guo W, et al. Phenotype and function of peripheral blood γδ T cells in HIV infection with tuberculosis. Front Cell Infect Microbiol, 2022; 12, 1071880. doi: 10.3389/fcimb.2022.1071880 |
[133] |
Introna M. CIK as therapeutic agents against tumors. J Autoimmun, 2017; 85, 32−44. doi: 10.1016/j.jaut.2017.06.008 |
[134] |
Zhang XY, Xie Q, Ye ZY, et al. Mesenchymal stem cells and tuberculosis: clinical challenges and opportunities. Front Immunol, 2021; 12, 695278. |
[135] |
Chackerian A, Alt J, Perera V, et al. Activation of NKT cells protects mice from tuberculosis. Infect Immun, 2002; 70, 6302−9. doi: 10.1128/IAI.70.11.6302-6309.2002 |
[136] |
Pi J, Zhang ZY, Yang EZ, et al. Nanocages engineered from bacillus Calmette-Guerin facilitate protective Vγ2Vδ2 T cell immunity against Mycobacterium tuberculosis infection. J Nanobiotechnology, 2022; 20, 36. doi: 10.1186/s12951-021-01234-3 |
[137] |
Rothchild AC, Jayaraman P, Nunes-Alves C, et al. iNKT cell production of GM-CSF controls Mycobacterium tuberculosis. PLoS Pathog, 2014; 10, e1003805. |
[138] |
Sakai S, Kauffman KD, Oh S, et al. MAIT cell-directed therapy of Mycobacterium tuberculosis infection. Mucosal Immunol, 2021; 14, 199−208. doi: 10.1038/s41385-020-0332-4 |
[139] |
Cardona P, Cardona PJ. Regulatory T cells in Mycobacterium tuberculosis infection. Front Immunol, 2019; 10, 2139. doi: 10.3389/fimmu.2019.02139 |