[1] |
Arbab-Zadeh A, Fuster V. The risk continuum of atherosclerosis and its implications for defining CHD by coronary angiography. J Am Coll Cardiol, 2016; 68, 2467−78. doi: 10.1016/j.jacc.2016.08.069 |
[2] |
Wong ND. Epidemiological studies of CHD and the evolution of preventive cardiology. Nat Rev Cardiol, 2014; 11, 276−89. doi: 10.1038/nrcardio.2014.26 |
[3] |
Herrmann J, Kaski JC, Lerman A. Coronary microvascular dysfunction in the clinical setting: from mystery to reality. Eur Heart J, 2012; 33, 2771−82b. doi: 10.1093/eurheartj/ehs246 |
[4] |
Wang JW, Zhou ZQ, Hu DY. Prevalence of arterial stiffness in North China, and associations with risk factors of cardiovascular disease: a community-based study. BMC Cardiovasc Disord, 2012; 12, 119. doi: 10.1186/1471-2261-12-119 |
[5] |
Li X, Zhang Y, Wang M, et al. The prevalence and awareness of cardiometabolic risk factors in Southern Chinese population with coronary artery disease. Sci World J, 2013; 2013, 416192. |
[6] |
Opadijo OG, Akande AA, Jimoh AK. Prevalence of coronary heart disease risk factors in Nigerians with systemic hypertension. Afr J Med Med Sci, 2004; 33, 121−5. |
[7] |
Wang L, Yao D, Wu T. Prevalence of overweight and smoking patients with coronary heart disease in rural China. Aust J Rural Health, 2004; 12, 17−21. doi: 10.1111/j.1440-1584.2004.t01-1-00543.x |
[8] |
Amaral N, Okonko DO. Metabolic abnormalities of the heart in type II diabetes. Diab Vasc Dis Res, 2015; 12, 239−48. doi: 10.1177/1479164115580936 |
[9] |
Kucharska-Newton A, Griswold M, Yao ZH, et al. Cardiovascular disease and patterns of change in functional status over 15 years: findings from the atherosclerosis risk in communities (ARIC) study. J Am Heart Assoc, 2017; 6. |
[10] |
Nuutinen S, Ailanen L, Savontaus E, et al. Melanocortin overexpression limits diet-induced inflammation and atherosclerosis in LDLR(-/-) mice. J Endocrinol, 2018; 236, 111−23. doi: 10.1530/JOE-17-0636 |
[11] |
Yamada S, Senokuchi T, Matsumura T, et al. Inhibition of local macrophage growth ameliorates focal inflammation and suppresses atherosclerosis. Arterioscler Thromb Vasc Biol, 2018; 38, 994−1006. doi: 10.1161/ATVBAHA.117.310320 |
[12] |
Zhao R, Ghazzawi N, Wu J, et al. Germinated brown rice attenuates atherosclerosis and vascular inflammation in low-density lipoprotein receptor-knockout mice. J Agric Food Chem, 2018; 66, 4512−20. doi: 10.1021/acs.jafc.8b00005 |
[13] |
Spence JD, Norris J. Infection, inflammation, and atherosclerosis. Stroke, 2003; 34, 333−4. doi: 10.1161/01.STR.0000054049.65350.EA |
[14] |
Levi M, van der Poll T, Schultz M. Infection and inflammation as risk factors for thrombosis and atherosclerosis. Semin Thromb Hemost, 2012; 38, 506−14. doi: 10.1055/s-0032-1305782 |
[15] |
Kozarov E, Huber K, Wojta J. Infection-associated biomarkers of inflammation in atherosclerosis. Curr Pharm Des, 2015; 21, 1776−82. doi: 10.2174/1381612821666141129173343 |
[16] |
Tang-Feldman YJ, Lochhead SR, Lochhead GR, et al. Murine cytomegalovirus (MCMV) infection upregulates P38 MAP kinase in aortas of Apo E KO mice: a molecular mechanism for MCMV-induced acceleration of atherosclerosis. J Cardiovasc Transl Res, 2013; 6, 54−64. doi: 10.1007/s12265-012-9428-x |
[17] |
Heybar H, Alavi SM, Farashahi Nejad M, et al. Cytomegalovirus infection and atherosclerosis in candidate of coronary artery bypass graft. Jundishapur J Microbiol, 2015; 8, e15476. |
[18] |
Kawasaki M, Arai Y, Takayama M, et al. Carotid atherosclerosis, cytomegalovirus infection, and cognitive decline in the very old: a community-based prospective cohort study. Age (Dordr), 2016; 38, 29. doi: 10.1007/s11357-016-9890-5 |
[19] |
Jia YJ, Liu J, Han FF, et al. Cytomegalovirus infection and atherosclerosis risk: a meta-analysis. J Med Virol, 2017; 89, 2196−206. doi: 10.1002/jmv.24858 |
[20] |
Datta SK, Tumilowicz JJ, Trentin JJ. Lysis of human arterial smooth muscle cells infected with herpesviridae by peripheral blood mononuclear cells: implications for atherosclerosis. Viral Immunol, 1993; 6, 153−60. doi: 10.1089/vim.1993.6.153 |
[21] |
R Horváth, J Cerný, J Benedík Jr, et al. The possible role of human cytomegalovirus (HCMV) in the origin of atherosclerosis. J Clin Virol, 2000; 16, 17−24. doi: 10.1016/S1386-6532(99)00064-5 |
[22] |
Lee YL, Liu CE, Cho WL, et al. Presence of cytomegalovirus DNA in leucocytes is associated with increased oxidative stress and subclinical atherosclerosis in healthy adults. Biomarkers, 2014; 19, 109−13. doi: 10.3109/1354750X.2013.877967 |
[23] |
Tsirpanlis G, Chatzipanagiotou S, Ioannidis A, et al. Serum and peripheral blood mononuclear cells infectious burden: correlation to inflammation and atherosclerosis in haemodialysis patients. Nephrology (Carlton), 2005; 10, 256−63. doi: 10.1111/j.1440-1797.2005.00414.x |
[24] |
Sacre K, Hunt PW, Hsue PY, et al. A role for cytomegalovirus-specific CD4+CX3CR1+ T cells and cytomegalovirus-induced T-cell immunopathology in HIV-associated atherosclerosis. AIDS, 2012; 26, 805−14. doi: 10.1097/QAD.0b013e328351f780 |
[25] |
Pant S, Deshmukh A, Gurumurthy GS, et al. Inflammation and atherosclerosis--revisited. J Cardiovasc Pharmacol Ther, 2014; 19, 170−8. doi: 10.1177/1074248413504994 |
[26] |
Popovic M, Smiljanic K, Dobutovic B, et al. Human cytomegalovirus infection and atherothrombosis. J Thromb Thrombolysis, 2012; 33, 160−72. doi: 10.1007/s11239-011-0662-x |
[27] |
Du Y, Zhang G, Liu Z. Human cytomegalovirus infection and coronary heart disease: a systematic review. Virol J, 2018; 15, 31. doi: 10.1186/s12985-018-0937-3 |
[28] |
Britt WJ. Human cytomegalovirus: propagation, quantification, and storage. Curr Protoc Microbiol, 2010; Chapter 14, Unit 14E 3. |
[29] |
Hamprecht K, Kagan KO, Goelz R. Hyperimmune globulin to prevent congenital CMV infection. N Engl J Med, 2014; 370, 2543. doi: 10.1056/NEJMc1405377 |
[30] |
Westphal M, Lautenschlager I, Backhaus C, et al. Cytomegalovirus and proliferative signals in the vascular wall of CABG patients. Thorac Cardiovasc Surg, 2006; 54, 219−26. doi: 10.1055/s-2006-923891 |
[31] |
Fiorentini S, Luganini A, Dell'Oste V, et al. Human cytomegalovirus productively infects lymphatic endothelial cells and induces a secretome that promotes angiogenesis and lymphangiogenesis through interleukin-6 and granulocyte-macrophage colony-stimulating factor. J Gen Virol, 2011; 92, 650−60. doi: 10.1099/vir.0.025395-0 |
[32] |
Jakovljevic A, Knezevic A, Nikolic N, et al. Herpesviruses viral loads and levels of proinflammatory cytokines in apical periodontitis. Oral Dis, 2018; 24, 840−6. doi: 10.1111/odi.12829 |
[33] |
Sinclair J, Sissons P. Latent and persistent infections of monocytes and macrophages. Intervirology, 1996; 39, 293−301. doi: 10.1159/000150501 |
[34] |
Geng S, Chen K, Yuan R, et al. The persistence of low-grade inflammatory monocytes contributes to aggravated atherosclerosis. Nat Commun, 2016; 7, 13436. doi: 10.1038/ncomms13436 |
[35] |
Woollard KJ, Geissmann F. Monocytes in atherosclerosis: subsets and functions. Nat Rev Cardiol, 2010; 7, 77−86. doi: 10.1038/nrcardio.2009.228 |
[36] |
Yang FJ, Shu KH, Chen HY, et al. Anti-cytomegalovirus IgG antibody titer is positively associated with advanced T cell differentiation and coronary artery disease in end-stage renal disease. Immun Ageing, 2018; 15, 15. doi: 10.1186/s12979-018-0120-0 |
[37] |
Belge KU, Dayyani F, Horelt A, et al. The proinflammatory CD14+CD16+DR++ monocytes are a major source of TNF. J Immunol, 2002; 168, 3536−42. doi: 10.4049/jimmunol.168.7.3536 |
[38] |
Zhang Q, Qian G, Ding Z. Xuemaitong granules attenuate carotid atherosclerosis by decreasing the expression of CD14+CD16+ monocytes, IL-6, TNF-alpha, and hsCRP. Genet Mol Res, 2014; 13, 7519−27. doi: 10.4238/2014.September.12.19 |
[39] |
Adam E, Melnick JL, Probtsfield JL, et al. High levels of cytomegalovirus antibody in patients requiring vascular surgery for atherosclerosis. Lancet, 1987; 2, 291−3. |
[40] |
Juhl D, Vockel A, Luhm J, et al. Comparison of the two fully automated anti-HCMV IgG assays: abbott architect CMV IgG assay and biotest anti-HCMV recombinant IgG ELISA. Transfus Med, 2013; 23, 187−94. doi: 10.1111/tme.12036 |
[41] |
Fabricant CG, Fabricant J, Litrenta MM, et al. Virus-induced atherosclerosis. J Exp Med, 1978; 148, 335−40. doi: 10.1084/jem.148.1.335 |
[42] |
Biolatti M, Gugliesi F, Dell'Oste V, et al. Modulation of the innate immune response by human cytomegalovirus. Infect Genet Evol, 2018; 64, 105−14. doi: 10.1016/j.meegid.2018.06.025 |
[43] |
Guo N, Zhang N, Yan L, et al. Down-regulation of single-stranded DNA-binding protein 1 expression induced by HCMV infection promotes lipid accumulation in cells. Braz J Med Biol Res, 2017; 50, e6389. doi: 10.1590/1414-431x20176389 |
[44] |
Ziegler-Heitbrock L. The CD14+ CD16+ blood monocytes: their role in infection and inflammation. J Leukoc Biol, 2007; 81, 584−92. doi: 10.1189/jlb.0806510 |
[45] |
Reeves MB, Sinclair JH. Circulating dendritic cells isolated from healthy seropositive donors are sites of human cytomegalovirus reactivation in vivo. J Virol, 2013; 87, 10660−7. doi: 10.1128/JVI.01539-13 |
[46] |
Ismahil MA, Hamid T, Bansal SS, et al. Remodeling of the mononuclear phagocyte network underlies chronic inflammation and disease progression in heart failure: critical importance of the cardiosplenic axis. Circ Res, 2014; 114, 266−82. doi: 10.1161/CIRCRESAHA.113.301720 |
[47] |
Jiang S, Li D, Li J, et al. Correlation between high-density lipoprotein and monocyte subsets in patients with stable coronary heart disease. Med Sci Monit, 2015; 21, 3129−35. doi: 10.12659/MSM.894485 |
[48] |
Ozdogru I, Inanc MT, Eryol NK, et al. CD14+ monocyte levels in subgroups of acute coronary syndromes. Coron Artery Dis, 2007; 18, 519−22. doi: 10.1097/MCA.0b013e3282ef4e7c |
[49] |
Park YM. CD36, a scavenger receptor implicated in atherosclerosis. Exp Mol Med, 2014; 46, e99. doi: 10.1038/emm.2014.38 |
[50] |
Ibrahim S, Siddiqui AA, Siddiqui AR, et al. Sociodemographic factors associated with IgG and IgM seroprevalence for human cytomegalovirus infection in adult populations of Pakistan: a seroprevalence survey. BMC Public Health, 2016; 16, 1112. doi: 10.1186/s12889-016-3772-8 |
[51] |
Zhang X, Xie Y, Zhou H, et al. Involvement of TLR4 in oxidized LDL/beta2GPI/anti-beta2GPI-induced transformation of macrophages to foam cells. J Atheroscler Thromb, 2014; 21, 1140−51. doi: 10.5551/jat.24372 |
[52] |
Izadi M, Fazel M, Saadat SH, et al. Cytomegalovirus localization in atherosclerotic plaques is associated with acute coronary syndromes: report of 105 patients. Methodist Debakey Cardiovasc J, 2012; 8, 42−6. |
[53] |
Miyajima S, Naruse K, Kobayashi Y, et al. Periodontitis-activated monocytes/macrophages cause aortic inflammation. Sci Rep, 2014; 4, 5171. |
[54] |
Gautier EL, Jakubzick C, Randolph GJ. Regulation of the migration and survival of monocyte subsets by chemokine receptors and its relevance to atherosclerosis. Arterioscler Thromb Vasc Biol, 2009; 29, 1412−8. doi: 10.1161/ATVBAHA.108.180505 |
[55] |
Huang Y, Wang JS, Yin HJ, et al. The expression of CD14(+)CD16(+) monocyte subpopulation in coronary heart disease patients with blood stasis syndrome. Evid Based Complement Alternat Med, 2013; 2013, 416932. |
[56] |
Schlitt A, Heine GH, Blankenberg S, et al. CD14+CD16+ monocytes in coronary artery disease and their relationship to serum TNF-alpha levels. Thromb Haemost, 2004; 92, 419−24. doi: 10.1160/TH04-02-0095 |
[57] |
Chavez-Sanchez L, Garza-Reyes MG, Espinosa-Luna JE, et al. The role of TLR2, TLR4 and CD36 in macrophage activation and foam cell formation in response to oxLDL in humans. Hum Immunol, 2014; 75, 322−9. doi: 10.1016/j.humimm.2014.01.012 |
[58] |
Stellos K, Bigalke B, Borst O, et al. Circulating platelet-progenitor cell coaggregate formation is increased in patients with acute coronary syndromes and augments recruitment of CD34+ cells in the ischaemic microcirculation. Eur Heart J, 2013; 34, 2548−56. doi: 10.1093/eurheartj/eht131 |
[59] |
Tarkin JM, Joshi FR, Rudd JH. PET imaging of inflammation in atherosclerosis. Nat Rev Cardiol, 2014; 11, 443−57. doi: 10.1038/nrcardio.2014.80 |
[60] |
Sbrana F, Cocci F, Papa A, et al. Routine laboratory tests to risk-stratify patients with chronic coronary artery disease. J Cardiol, 2013; 61, 132−7. doi: 10.1016/j.jjcc.2012.09.005 |