| [1] | Ma SQ, Li ZW, Gong SX, et al. The laws and effects of terahertz wave interactions with neurons. Front Bioeng Biotechnol, 2023; 11, 1147684. doi: 10.3389/fbioe.2023.1147684 |
| [2] | Tan SZ, Tan PC, Luo LQ, et al. Exposure effects of terahertz waves on primary neurons and neuron-like cells under nonthermal conditions. Biomed Environ Sci, 2019; 32, 739−54. |
| [3] | Wang H, Tan SZ, Dong J, et al. iTRAQ quantitatively proteomic analysis of the hippocampus in a rat model of accumulative microwave-induced cognitive impairment. Environ Sci Pollut Res, 2019; 26, 17248−60. doi: 10.1007/s11356-019-04873-0 |
| [4] | Middei S, Ammassari-Teule M, Marie H. Synaptic plasticity under learning challenge. Neurobiol Learn Mem, 2014; 115, 108−15. doi: 10.1016/j.nlm.2014.08.001 |
| [5] | Hanada T. Ionotropic glutamate receptors in epilepsy: a review focusing on AMPA and NMDA receptors. Biomolecules, 2020; 10, 464. doi: 10.3390/biom10030464 |
| [6] | Glaser T, Castillo ARG, Oliveira Á, et al. Intracellular calcium measurements for functional characterization of neuronal phenotypes. Methods Mol Biol, 2016; 1341, 245−55. |
| [7] | Ruiz-Fernández AR, Campos L, Gutierrez-Maldonado SE, et al. Nanosecond pulsed electric field (nsPEF): opening the biotechnological pandora's box. Int J Mol Sci, 2022; 23, 6158. doi: 10.3390/ijms23116158 |
| [8] | Marchi S, Patergnani S, Missiroli S, et al. Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death. Cell Calcium, 2018; 69, 62−72. doi: 10.1016/j.ceca.2017.05.003 |
| [9] | Ma SQ, Li ZW, Gong SX, et al. High frequency electromagnetic radiation stimulates neuronal growth and hippocampal synaptic transmission. Brain Sci, 2023; 13, 686. doi: 10.3390/brainsci13040686 |
| [10] | Liu X, Qiao Z, Chai YM, et al. Nonthermal and reversible control of neuronal signaling and behavior by midinfrared stimulation. Proc Natl Acad Sci USA, 2021; 118, e2015685118. doi: 10.1073/pnas.2015685118 |