[1] |
Friedman RL, Manly SP, McMahon M, et al. Transcriptional and posttranscriptional regulation of interferon-induced gene expression in human cells. Cell, 1984; 38, 745−55. doi: 10.1016/0092-8674(84)90270-8 |
[2] |
Tanaka SS, Yamaguchi YL, Tsoi B, et al. IFITM/Mil/fragilis family proteins IFITM1 and IFITM3 play distinct roles in mouse primordial germ cell homing and repulsion. Developmental Cell, 2005; 9, 745−56. doi: 10.1016/j.devcel.2005.10.010 |
[3] |
Brass AL, Huang IC, Benita Y, et al. The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell, 2009; 139, 1243−54. doi: 10.1016/j.cell.2009.12.017 |
[4] |
Everitt AR, Clare S, Pertel T, et al. IFITM3 restricts the morbidity and mortality associated with influenza. Nature, 2012; 484, 519−23. doi: 10.1038/nature10921 |
[5] |
Jia R, Pan Q, Ding S, et al. The N-terminal region of IFITM3 modulates its antiviral activity by regulating IFITM3 cellular localization. J Virol, 2012; 86, 13697−707. doi: 10.1128/JVI.01828-12 |
[6] |
Allen EK, Randolph AG, Bhangale T, et al. SNP-mediated disruption of CTCF binding at the IFITM3 promoter is associated with risk of severe influenza in humans. Nat Med, 2017; 23, 975−83. doi: 10.1038/nm.4370 |
[7] |
Kim YC, Jeong MJ, Jeong BH. Strong association of regulatory single nucleotide polymorphisms (SNPs) of the IFITM3 gene with influenza H1N1 2009 pandemic virus infection. Cell Mol Immunol, 2019; 11, 975−7. |
[8] |
Kim YC, Jeong BH. No correlation of the disease severity of influenza a virus infection with the rs12252 polymorphism of the interferon-induced transmembrane protein 3 gene. Intervirology, 2017; 60, 69−74. doi: 10.1159/000479087 |
[9] |
Mills TC, Rautanen A, Elliott KS, Parks T, et al. IFITM3 and susceptibility to respiratory viral infections in the community. J Infect Dis, 2014; 209, 1028−31. doi: 10.1093/infdis/jit468 |
[10] |
Zani A, Yount JS. Antiviral protection by IFITM3 in vivo. Curr Clin Microbiol Rep, 2018; 5, 229−37. doi: 10.1007/s40588-018-0103-0 |
[11] |
Desai TM, Marin M, Chin CR, et al. IFITM3 restricts influenza A virus entry by blocking the formation of fusion pores following virus-endosome hemifusion. PLoS Pathog, 2014; 10, e1004048. doi: 10.1371/journal.ppat.1004048 |
[12] |
Amini-Bavil-Olyaee S, Choi YJ, Lee JH, et al. The antiviral effector IFITM3 disrupts intracellular cholesterol homeostasis to block viral entry. Cell Host Microbe, 2013; 13, 452−64. doi: 10.1016/j.chom.2013.03.006 |
[13] |
Wee YS, Roundy KM, Weis JJ, et al. Interferon-inducible transmembrane proteins of the innate immune response act as membrane organizers by influencing clathrin and v-ATPase localization and function. Innate Immun, 2012; 18, 834−45. doi: 10.1177/1753425912443392 |
[14] |
Spence JS, He R, Hoffmann HH, et al. IFITM3 directly engages and shuttles incoming virus particles to lysosomes. Nat Chem Biol, 2019; 15, 259−68. doi: 10.1038/s41589-018-0213-2 |
[15] |
Wakim LM, Gupta N, Mintern JD, et al. Enhanced survival of lung tissue-resident memory CD8(+) T cells during infection with influenza virus due to selective expression of IFITM3. Nat Immunol, 2013; 14, 238−45. doi: 10.1038/ni.2525 |
[16] |
Infusini G, Smith JM, Yuan H, et al. Respiratory DC use IFITM3 to avoid direct viral infection and safeguard virus-specific CD8+ T cell priming. PLoS One, 2015; 10, e0143539. doi: 10.1371/journal.pone.0143539 |
[17] |
Campbell RA, Schwertz H, Hottz ED, et al. Human megakaryocytes possess intrinsic anti-viral immunity through regulated induction of IFITM3. Blood, 2019; 19, 2013−26. |
[18] |
Vierck JL, Bryne KM, Dodson MV. Evaluating dot and Western blots using image analysis and pixel quantification of electronic images. Methods Cell Sci, 2000; 22, 313−8. doi: 10.1023/A:1017581302281 |
[19] |
Pichler P, Kocher T, Holzmann J, et al. Peptide labeling with isobaric tags yields higher identification rates using iTRAQ 4-plex compared to TMT 6-plex and iTRAQ 8-plex on LTQ Orbitrap. Anal Chem, 2010; 82, 6549−58. doi: 10.1021/ac100890k |
[20] |
Tyanova S, Temu T, Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc, 2016; 11, 2301−19. doi: 10.1038/nprot.2016.136 |
[21] |
Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 2009; 4, 44−57. doi: 10.1038/nprot.2008.211 |
[22] |
Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA, 2005; 102, 15545−50. doi: 10.1073/pnas.0506580102 |
[23] |
Wang J, Li F, Zheng M, et al. Lung natural killer cells in mice: phenotype and response to respiratory infection. Immunology, 2012; 137, 37−47. doi: 10.1111/j.1365-2567.2012.03607.x |
[24] |
Trinchieri G. Biology of natural killer cells. Adv Immunol, 1989; 47, 187−376. doi: 10.1016/S0065-2776(08)60664-1 |
[25] |
Ziegler SF, Ramsdell F, Hjerrild KA, et al. Molecular characterization of the early activation antigen CD69: a type II membrane glycoprotein related to a family of natural killer cell activation antigens. Eur J Immunol, 1993; 23, 1643−8. doi: 10.1002/eji.1830230737 |
[26] |
Alter G, Malenfant JM, Altfeld M. CD107a as a functional marker for the identification of natural killer cell activity. J Immunol Methods, 2004; 294, 15−22. doi: 10.1016/j.jim.2004.08.008 |
[27] |
Weiss ID, Wald O, Wald H, et al. IFN-gamma treatment at early stages of influenza virus infection protects mice from death in a NK cell-dependent manner. J Interferon Cytokine Res, 2010; 30, 439−49. doi: 10.1089/jir.2009.0084 |
[28] |
Vivier E, Tomasello E, Baratin M, et al. Functions of natural killer cells. Nat Immunol, 2008; 9, 503−10. doi: 10.1038/ni1582 |
[29] |
Lanier LL. Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol, 2008; 9, 495−502. |
[30] |
Schultz-Cherry S. Role of NK cells in influenza infection. Curr Top Microbiol Immunol, 2015; 386, 109−20. |
[31] |
Zhou G, Juang SW, Kane KP. NK cells exacerbate the pathology of influenza virus infection in mice. Eur J Immunol, 2013; 43, 929−38. doi: 10.1002/eji.201242620 |