[1] |
K Bailey, J Chilton, E Dahi M, et al. Fluoride in Drinking-water. WHO Press, Switzerland, 2006; 32-4. |
[2] |
Yonghua Li, Wuyi Wang, Linsheng Yang, et al. Environmental epidemic characteristics of coal-burning endemic fluorosis and the safety threshold of coal fluoride in China. Fluoride, 2003; 36, 106-12. https://core.ac.uk/display/71585885 |
[3] |
Luo KL, Li L, Zhang SX. Coal-burning roasted corn and chili as the cause of dental fluorosis for children in southwestern China. J Hazard Mater, 2011; 185, 1340-7. doi: 10.1016/j.jhazmat.2010.10.052 |
[4] |
Jha SK, Mishra VK, Sharma DK, et al. Fluoride in the environment and its metabolism in humans. Rev Environ Contam Toxicol, 2011; 211, 121-42. http://www.ncbi.nlm.nih.gov/pubmed/21287392 |
[5] |
Yang C, Wang Y, Xu H. Treatment and Prevention of Skeletal Fluorosis. Biomed Environ Sci, 2017; 30, 147-9. https://www.sciencedirect.com/science/article/pii/S0895398817300454#! |
[6] |
Guan Zhizhong. Role of oxidative stress in molecular pathogenesis of endemic fluorosis. Chin J Endemiol, 2016; 35, 79-82. (In Chinese) http://en.cnki.com.cn/Article_en/CJFDTOTAL-GYYB199103009.htm |
[7] |
Barbier O, Arreola-Mendoza L, Del Razo LM. Molecular mechanisms of fluoride toxicity. Chemico-biological interactions, 2010; 188, 319-33. doi: 10.1016/j.cbi.2010.07.011 |
[8] |
Wilhelm Stahl, Helmut Sies. Antioxidant activity of carotenoids. Mol Aspects Med, 2003; 24, 345-51. doi: 10.1016/S0098-2997(03)00030-X |
[9] |
Mansour HH, Tawfik SS. Efficacy of lycopene against fluoride toxicity in rats. Pharmaceutical biology, 2012; 50, 707-11. doi: 10.3109/13880209.2011.618994 |
[10] |
Karahan I, Atessahin A, Yilmaz S, et al. Rotective effect of lycopene on gentamicin-induced oxidative stress and nephrotoxicity in rats. Toxicology, 2005; 215, 198-204. doi: 10.1016/j.tox.2005.07.007 |
[11] |
Li W, Jiang B, Cao X, et al. Protective effect of lycopene on fluoride-induced ameloblasts apoptosis and dental fluorosis through oxidative stress-mediated Caspase pathways. Chem Biological Interact, 2017; 261, 27-34. doi: 10.1016/j.cbi.2016.11.021 |
[12] |
Dai Z, Wang R, Ang LW, et al. Protective effects of dietary carotenoids on risk of hip fracture in men:the Singapore Chinese Health Study. J Bone Miner Res, 2014; 29, 408-17. doi: 10.1002/jbmr.v29.2 |
[13] |
Clinton SK. Lycopene:chemistry, biology, and implications for human health and disease. Nutr Rev, 1998; 56, 35-51. http://nutritionreviews.oxfordjournals.org/content/56/2/35.abstract |
[14] |
Sahni S, Hannan MT, Blumberg J, et al. Inverse association of carotenoid intakes with 4-y change in bone mineral density in elderly men and women:the Framingham Osteoporosis Study. Am J Clin Nutr, 2009; 89, 416-24. doi: 10.3945/ajcn.2008.26388 |
[15] |
Xu J, Song C, Song X, et al. Carotenoids and risk of fracture:a meta-analysis of observational studies. Oncotarget, 2017; 8, 2391-9. http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=article&op=view&path%5B%5D=13678&path%5B%5D=0 |
[16] |
Choubisa SL, Choubisa L, Choubisa DK. Endemic fluorosis in Rajasthan. Indian J Environ Health, 2001; 43, 177-89. http://www.ncbi.nlm.nih.gov/pubmed/12395525 |
[17] |
Pramanik S, Saha D. The genetic influence in fluorosis. Environ Toxicol Pharmacol, 2017; 56, 157-62. doi: 10.1016/j.etap.2017.09.008 |
[18] |
Varol E, Icli A, Aksoy F, et al. Evaluation of total oxidative status and total antioxidant capacity in patients with endemic fluorosis. Toxicol Ind Health, 2013; 29, 175-80. doi: 10.1177/0748233711428641 |
[19] |
Wang Q, Cui KP, Xu YY, et al. Coal-burning endemic fluorosis is associated with reduced activity in antioxidative enzymes and Cu/Zn-SOD gene expression. Environ Geochem Hlth, 2014; 36, 107-15. doi: 10.1007/s10653-013-9522-2 |
[20] |
Deng FY, Lei SF, Chen XD. An Integrative Study Ascertained SOD2 as a Susceptibility Gene for Osteoporosis in Chinese. J Bone Miner Res, 2011; 26, 2695-701. doi: 10.1002/jbmr.471 |
[21] |
Ma Q, Huang H, Sun L, et al. Gene-environment interaction:Does fluoride influence the reproductive hormones in male farmers modified by ERα gene polymorphisms? Chemosphere, 2017; 188, 525-31. doi: 10.1016/j.chemosphere.2017.08.166 |
[22] |
Yang D, Liu Y, Chu Y. Association between vitamin D receptor gene FokI polymorphism and skeletal fluorosis of the brick-tea type fluorosis:a cross sectional, case control study. BMJ Open, 2016; 6, e011980. doi: 10.1136/bmjopen-2016-011980 |
[23] |
Ministry of Health of the People's Republic of China Health. Industry Standard of the People's Republic of China WS/T 192-2008 Diagnostic Criteria for Endemic Skeletal Fluorosis. People's Medical Publishing House, Beijin, 2008; 1-4. (In Chinese) |
[24] |
Yang YX, Wang GY, Pan XC. China Food Composition, 2nd edn. University Medical Publishing House, Beijin, 2009; 377-84. (In Chinese) |
[25] |
USDA national nutrient database for standard reference release28. http://www.ars.usda.gov/Services/docs.htm?docid=8964, 2015. [2016-7] |
[26] |
Wang L, Li B, Pan MX, et al. Specific carotenoid intake is inversely associated with the risk of breast cancer among Chinese women. The British journal of nutrition, 2014; 111, 1686-95. doi: 10.1017/S000711451300411X |
[27] |
Zhang CX, Ho SC. Validity and reproducibility of a food frequency Questionnaire among Chinese women in Guangdong province. Asia Pac J Clin Nutr, 2009; 18, 240-50. http://search.informit.com.au/fullText;dn=683818080008836;res=IELHEA |
[28] |
Lu MS, Fang YJ, Chen YM, et al. Higher intake of carotenoid is associated with a lower risk of colorectal cancer in Chinese adults:a case-control study. Eur J Nutr, 2015; 54, 619-28. doi: 10.1007/s00394-014-0743-7 |
[29] |
Ministry of Health of the People's Republic of China. Health Industry Standard of the People's Republic of China WS/T 256-2005 The normal urinary fluoride level of Chinese population. People's Medical Publishing House, Beijin, 2006; 1-3. (In Chinese) |
[30] |
Willett WC, Howe GR, Kushi LH. Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr, 1997; 65, 1220S-8S. doi: 10.1093/ajcn/65.4.1220S |
[31] |
Sahni S, Hannan MT, Blumberg J, et al. Protective effect of total carotenoid and lycopene intake on the risk of hip fracture:a 17-year follow-up from the Framingham Osteoporosis Study. J Bone Miner Res, 2009; 24, 1086-94. doi: 10.1359/jbmr.090102 |
[32] |
Hayhoe RPG, Lentjes MAH, Mulligan AA, et al. Carotenoid dietary intakes and plasma concentrations are associated with heel bone ultrasound attenuation and osteoporotic fracture risk in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk cohort. Br J Nutr, 2017; 117, 1439-53. doi: 10.1017/S0007114517001180 |
[33] |
Zhang ZQ, Cao WT, Liu J, et al. Greater serum carotenoid concentration associated with higher bone mineral density in Chinese adults. Osteoporos Int, 2016; 27, 1593-601. doi: 10.1007/s00198-015-3425-2 |
[34] |
Rao LG, Krishnadev N, Banasikowska K, et al. Lycopene Ⅰ--effect on osteoclasts:lycopene inhibits basal and parathyroid hormone-stimulated osteoclast formation and mineral resorption mediated by reactive oxygen species in rat bone marrow cultures. J Med Food, 2003; 6, 69-78. doi: 10.1089/109662003322233459 |
[35] |
Kim L, Rao AV, Rao LG. Lycopene Ⅱ——effect on osteoblasts:the carotenoid lycopene stimulates cell proliferation and alkaline phosphatase activity of SaOS-2 cells. J Med Food, 2003; 6, 79-86. doi: 10.1089/109662003322233468 |
[36] |
Gupta N, Gupta N, Chhabra P. Image Diagnosis:Dental and Skeletal Fluorosis. Perm J, 2016; 20, e105-106. http://www.neurologyindia.com/article.asp?issn=0028-3886;year=2009;volume=57;issue=1;spage=7;epage=12;aulast=Reddy;type=0 |
[37] |
Simon MJK, Beil FT, Riedel C, et al. Deterioration of teeth and alveolar bone loss due to chronic environmental high-level fluoride and low calcium exposure. Clin Oral Investig, 2016; 20, 2361-70. doi: 10.1007/s00784-016-1727-1 |
[38] |
Wauquier F, Leotoing L, Coxam V, et al. Oxidative stress in bone remodelling and disease. Trends Mol Med, 2009; 15, 468-77. doi: 10.1016/j.molmed.2009.08.004 |
[39] |
Bai XC, Lu D, Liu AL, et al. Reactive oxygen species stimulates receptor activator of NF-kappaB ligand expression in osteoblast. J Biol Chem, 2005; 280, 17497-506. doi: 10.1074/jbc.M409332200 |
[40] |
Lee NK, Choi YG, Baik JY, et al. A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood, 2005; 106, 852-9. doi: 10.1182/blood-2004-09-3662 |
[41] |
Stahl W, Sies H. Lycopene:a biologically important carotenoid for humans? Arch Biochem Biophys, 1996; 336, 1-9. doi: 10.1006/abbi.1996.0525 |
[42] |
Ming X, Min X, Lei H, et al. Role for Functional SOD2 Polymorphism in Pulmonary Arterial Hypertension in a Chinese Population. Int J Environ Res Public Health, 2017; 14, 259-66. doi: 10.3390/ijerph14030259 |
[43] |
Lee SA. Gene-diet interaction on cancer risk in epidemiological studies. J Prev Med Public Health, 2009; 42, 360-70. doi: 10.3961/jpmph.2009.42.6.360 |
[44] |
Karaoz E, Oncu M, Gulle K, et al. Effect of chronic fluorosis on lipid peroxidation and histology of kidney tissues in first- and second-generation rats. Biol Trace Elem Res, 2004; 102, 199-208. doi: 10.1385/BTER:102:1-3 |
[45] |
Barbier O, Arreola-Mendoza L, Del Razo LM. Molecular mechanisms of fluoride toxicity. Chem Biol Interact, 2010; 188, 319-33. doi: 10.1016/j.cbi.2010.07.011 |
[46] |
Suzuki M, Sierant ML, Antone JV, et al. Uncoupling protein-2 is an antioxidant that is up-regulated in the enamel organ of fluoride-treated rats. Connect Tissue Res, 2014; 55, 25-8. doi: 10.3109/03008207.2014.923854 |
[47] |
J Opydo-Szymaczek, M Borysewicz-Lewicka. Urinary fluoride levels for assessment of fluoride exposure of pregnant women in Poznan. Pol Fluoride, 2005; 38, 312-7. https://www.researchgate.net/publication/265318084_Urinary_fluoride_levels_for_assessment_of_fluoride_exposure_of_pregnant_women_in_Poznan_Poland |
[48] |
Narges Omid, Anne Maguire, William T, et al. Total daily fluoride intake and fractional urinary fluoride excretion in 4 to 6 year old children living in a fluoridated area:weekly variation? Community Dent Oral Epidemiol, 2016; 45, doi: 10.1111/cdoe.12254. |