| [1] | Roh EJ. Comparison and review of international guidelines for treating asthma in children. Clin Exp Pediat, 2024; 67, 447−55. doi: 10.3345/cep.2022.01466 |
| [2] | Huang KW, Yang T, Xu JY, et al. Prevalence, risk factors, and management of asthma in China: a national cross-sectional study. Lancet, 2019; 394, 407−18. doi: 10.1016/S0140-6736(19)31147-X |
| [3] | Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol, 2008; 8, 183−92. doi: 10.1038/nri2254 |
| [4] | Petzold S, Averbeck M, Simon JC, et al. Lifetime-dependent effects of bisphenol A on asthma development in an experimental mouse model. PLoS One, 2014; 9, e100468. doi: 10.1371/journal.pone.0100468 |
| [5] | Spanier AJ, Fausnight T, Camacho TF, et al. The associations of triclosan and paraben exposure with allergen sensitization and wheeze in children. Allergy Asthma Proc, 2014; 35, 475−81. doi: 10.2500/aap.2014.35.3803 |
| [6] | Hou J, Yin WJ, Li P, et al. Joint effect of polycyclic aromatic hydrocarbons and phthalates exposure on telomere length and lung function. J Hazard Mater, 2020; 386, 121663. doi: 10.1016/j.jhazmat.2019.121663 |
| [7] | Lin JL, Cheng SY, Zhang J, et al. The association between daily dietary intake of riboflavin and lung function impairment related with dibutyl phthalate exposure and the possible mechanism. Nutrients, 2022; 14, 2282. doi: 10.3390/nu14112282 |
| [8] | Li DS, Suh S. Health risks of chemicals in consumer products: a review. Environ Int, 2019; 123, 580−7. doi: 10.1016/j.envint.2018.12.033 |
| [9] | Harley KG, Kogut K, Madrigal DS, et al. Reducing phthalate, paraben, and phenol exposure from personal care products in adolescent girls: findings from the HERMOSA intervention study. Environ Health Perspect, 2016; 124, 1600−7. doi: 10.1289/ehp.1510514 |
| [10] | Bousoumah R, Leso V, Iavicoli I, et al. Biomonitoring of occupational exposure to bisphenol A, bisphenol S and bisphenol F: a systematic review. Sci Total Enviro, 2021; 783, 146905. doi: 10.1016/j.scitotenv.2021.146905 |
| [11] | Chen D, Kannan K, Tan HL, et al. Bisphenol analogues other than BPA: environmental occurrence, human exposure, and toxicity-a review. Environ Sci Technol, 2016; 50, 5438−53. doi: 10.1021/acs.est.5b05387 |
| [12] | Wu LX, Zhu BQ, Jiang Y, et al. Triclosan in the urine of Chinese youth: concentration, temporal variability, sources of exposure and predictive ability. Chemosphere, 2024; 144005. |
| [13] | Latch DE, Packer JL, Stender BL, et al. Aqueous photochemistry of triclosan: formation of 2, 4-dichlorophenol, 2, 8-dichlorodibenzo-p-dioxin, and oligomerization products. Environ Toxicol Chem, 2005; 24, 517−25. doi: 10.1897/04-243R.1 |
| [14] | Wei YD, Zhu JM, Nguyen A. Urinary concentrations of dichlorophenol pesticides and obesity among adult participants in the U. S. National Health and Nutrition Examination Survey (NHANES) 2005-2008. Int J Hyg Environ Health, 2014; 217, 294−9. doi: 10.1016/j.ijheh.2013.07.003 |
| [15] | Honda M, Robinson M, Kannan K. Parabens in human urine from several Asian countries, Greece, and the United States. Chemosphere, 2018; 201, 13−9. doi: 10.1016/j.chemosphere.2018.02.165 |
| [16] | Ji ZW, Liu J, Sakkiah S, et al. BPA replacement compounds: current status and perspectives. ACS Sustain Chem Eng, 2021; 9, 2433−46. doi: 10.1021/acssuschemeng.0c09276 |
| [17] | Chatterjee S, Adhikary S, Bhattacharya S, et al. Parabens as the double-edged sword: understanding the benefits and potential health risks. Sci Total Environ, 2024; 954, 176547. doi: 10.1016/j.scitotenv.2024.176547 |
| [18] | Castillero-Rosales I, Alvarado-González NE, Núñez-Samudio V, et al. Exposure to bisphenols, parabens, and benzophenones in colostrum breast milk of Panamanian women: a pilot study from the PA-MAMI cohort. Sci Total Environ, 2024; 954, 176677. doi: 10.1016/j.scitotenv.2024.176677 |
| [19] | Peng MQ, Dabelea D, Adgate JL, et al. Associations of urinary biomarkers of phthalates, phenols, parabens, and organophosphate esters with glycemic traits in pregnancy: the Healthy Start Study. Environ Res, 2024; 262, 119810. doi: 10.1016/j.envres.2024.119810 |
| [20] | Vernet C, Pin I, Giorgis-Allemand L, et al. In utero exposure to select phenols and phthalates and respiratory health in five-year-old boys: a prospective study. Environ Health Perspect, 2017; 125, 097006. doi: 10.1289/EHP1015 |
| [21] | Abellan A, Mensink-Bout SM, Garcia-Esteban R, et al. In utero exposure to bisphenols and asthma, wheeze, and lung function in school-age children: a prospective meta-analysis of 8 European birth cohorts. Environ Int, 2022; 162, 107178. doi: 10.1016/j.envint.2022.107178 |
| [22] | Vaidya SV, Kulkarni H. Association of urinary bisphenol A concentration with allergic asthma: results from the National Health and Nutrition Examination Survey 2005-2006. J Asthma, 2012; 49, 800−6. doi: 10.3109/02770903.2012.721041 |
| [23] | Lin TJ, Karmaus WJJ, Chen ML, et al. Interactions between bisphenol a exposure and GSTP1 Polymorphisms in childhood asthma. Allergy Asthma Immunol Res, 2018; 10, 172−9. doi: 10.4168/aair.2018.10.2.172 |
| [24] | Mendy A, Salo PM, Wilkerson J, et al. Association of urinary levels of bisphenols F and S used as bisphenol A substitutes with asthma and hay fever outcomes. Environ Res, 2020; 183, 108944. doi: 10.1016/j.envres.2019.108944 |
| [25] | Braun G, Herberth G, Krauss M, et al. Neurotoxic mixture effects of chemicals extracted from blood of pregnant women. Science, 2024; 386, 301−9. doi: 10.1126/science.adq0336 |
| [26] | Yu LL, Liu W, Wang X, et al. A review of practical statistical methods used in epidemiological studies to estimate the health effects of multi-pollutant mixture. Environ Pollut, 2022; 306, 119356. doi: 10.1016/j.envpol.2022.119356 |
| [27] | Zhang YQ, Dong TY, Hu WY, et al. Association between exposure to a mixture of phenols, pesticides, and phthalates and obesity: comparison of three statistical models. Environ Int, 2019; 123, 325−36. doi: 10.1016/j.envint.2018.11.076 |
| [28] | Beuther DA, Sutherland ER. Overweight, obesity, and incident asthma: a meta-analysis of prospective epidemiologic studies. Am J Respir Crit Care Med, 2007; 175, 661−6. doi: 10.1164/rccm.200611-1717OC |
| [29] | Beasley R, Semprini A, Mitchell EA. Risk factors for asthma: is prevention possible?. Lancet, 2015; 386, 1075−85. doi: 10.1016/S0140-6736(15)00156-7 |
| [30] | Costa SA, Severo M, Lopes C, et al. Association between bisphenol A exposure and cardiometabolic outcomes: a longitudinal approach. J Hazard Mater, 2024; 476, 135000. doi: 10.1016/j.jhazmat.2024.135000 |
| [31] | Moreno-Llamas A, San Sebastián M, Gustafsson PE. The transmission of social inequalities through economic difficulties and lifestyle factors on body mass index: an intersectional mediation analysis in the Swedish population. Soc Sci Med, 2024; 360, 117314. doi: 10.1016/j.socscimed.2024.117314 |
| [32] | Wilson SJ, Syed SU, Yang IS, et al. A tale of two marital stressors: comparing proinflammatory responses to partner distress and marital conflict. Brain Behav Immun, 2024; 119, 898−907. doi: 10.1016/j.bbi.2024.05.003 |
| [33] | Cai L, Wang XM, Fan LM, et al. Socioeconomic disparities in prevalence and behaviors of smoking in rural Southwest China. BMC Public Health, 2019; 19, 1117. doi: 10.1186/s12889-019-7455-0 |
| [34] | Nan WB, Peng ZY, Yi T, et al. Association between exposure to organophosphate esters metabolites and sarcopenia prevalence: a cross-sectional study using NHANES data. Ecotoxicol Environ Saf, 2024; 285, 117041. doi: 10.1016/j.ecoenv.2024.117041 |
| [35] | Carrico C, Gennings C, Wheeler DC, et al. Characterization of weighted quantile sum regression for highly correlated data in a risk analysis setting. J Agric Biol Environ Stat, 2015; 20, 100−20. doi: 10.1007/s13253-014-0180-3 |
| [36] | Czarnota J, Gennings C, Colt JS, et al. Analysis of environmental chemical mixtures and non-Hodgkin lymphoma risk in the NCI-SEER NHL study. Environ Health Perspect, 2015; 123, 965−70. doi: 10.1289/ehp.1408630 |
| [37] | Chen YT, Wu JH, Li R, et al. Individual and joint association of phenols, parabens, and phthalates with childhood lung function: exploring the mediating role of peripheral immune responses. J Hazard Mater, 2023; 454, 131457. doi: 10.1016/j.jhazmat.2023.131457 |
| [38] | Karramass T, Sol C, Kannan K, et al. Bisphenol and phthalate exposure during pregnancy and the development of childhood lung function and asthma. The Generation R Study. Environ Pollut, 2023; 332, 121853. doi: 10.1016/j.envpol.2023.121853 |
| [39] | Jackson-Browne MS, Patti MA, Henderson NB, et al. Asthma and environmental exposures to phenols, polycyclic aromatic hydrocarbons, and phthalates in children. Curr Environ Health Rep, 2023; 10, 469−77. doi: 10.1007/s40572-023-00417-4 |
| [40] | Baek B, Park JT, Kwak K. Association of urinary bisphenols concentration with asthma in Korean adolescents: data from the third Korean national environmental health survey. Toxics, 2021; 9, 291. doi: 10.3390/toxics9110291 |
| [41] | Hauptman M, Jackson-Browne MS, Busgang S, et al. Urinary biomarkers of environmental exposures and asthma morbidity in a school inner city asthma study. Int J Hyg Environ Health, 2024; 262, 114430. doi: 10.1016/j.ijheh.2024.114430 |
| [42] | Quirós-Alcalá L, Hansel NN, McCormack M, et al. Exposure to bisphenols and asthma morbidity among low-income urban children with asthma. J Allergy Clin Immunol, 2021; 147, 577-86. e7. |
| [43] | Du JY, Huo SM, Li B, et al. The toxic effects and mechanisms of maternal exposure to Bisphenol F during gestation and lactation on lungs in female offspring mice. Environ Pollut, 2024; 361, 124800. doi: 10.1016/j.envpol.2024.124800 |
| [44] | Yanagisawa R, Koike E, Win-Shwe TT, et al. Effects of oral exposure to low-dose Bisphenol S on allergic asthma in mice. Int J Mol Sci, 2022; 23, 10790. doi: 10.3390/ijms231810790 |
| [45] | Lee-Sarwar K, Hauser R, Calafat AM, et al. Prenatal and early-life triclosan and paraben exposure and allergic outcomes. J Allergy Clin Immunol, 2018; 142, 269-78. e15. |
| [46] | Junge KM, Buchenauer L, Strunz S, et al. Effects of exposure to single and multiple parabens on asthma development in an experimental mouse model and a prospective cohort study. Sci Total Environ, 2022; 814, 152676. doi: 10.1016/j.scitotenv.2021.152676 |
| [47] | Coiffier O, Lyon-Caen S, Boudier A, et al. Prenatal exposure to synthetic phenols and phthalates and child respiratory health from 2 to 36 months of life. Environ Pollut, 2023; 330, 121794. doi: 10.1016/j.envpol.2023.121794 |
| [48] | Quirós-Alcalá L, Hansel NN, McCormack MC, et al. Paraben exposures and asthma-related outcomes among children from the US general population. J Allergy Clin Immunol, 2018; 143, 948-56. e4. |
| [49] | Agier L, Basagaña X, Maitre L, et al. Early-life exposome and lung function in children in Europe: an analysis of data from the longitudinal, population-based HELIX cohort. Lancet Planet Health, 2019; 3, e81−92. doi: 10.1016/S2542-5196(19)30010-5 |
| [50] | Roman MA, Rossiter HB, Casaburi R. Exercise, ageing and the lung. Eur Respir J, 2016; 48, 1471−86. doi: 10.1183/13993003.00347-2016 |
| [51] | Rönmark E, Lindberg A, Watson L, et al. Outcome and severity of adult onset asthma—report from the obstructive lung disease in northern Sweden studies (OLIN). Respir Med, 2007; 101, 2370−7. doi: 10.1016/j.rmed.2007.06.011 |
| [52] | Akinbami LJ, Fryar CD. Current asthma prevalence by weight status among adults: United States, 2001-2014. NCHS Data Brief, 2016; 1-8. |
| [53] | Borrell LN, Nguyen EA, Roth LA, et al. Childhood obesity and asthma control in the GALA II and SAGE II studies. Am J Respir Crit Care Med, 2013; 187, 697−02. doi: 10.1164/rccm.201211-2116OC |
| [54] | Van Gent R, Van Der Ent CK, Rovers MM, et al. Excessive body weight is associated with additional loss of quality of life in children with asthma. J Allergy Clin Immunol, 2007; 119, 591−6. doi: 10.1016/j.jaci.2006.11.007 |
| [55] | Kowalczyk M, Piwowarski JP, Wardaszka A, et al. Application of in vitro models for studying the mechanisms underlying the obesogenic action of Endocrine-Disrupting Chemicals (EDCs) as food contaminants-a review. Int J Mol Sci, 2023; 24, 1083. doi: 10.3390/ijms24021083 |
| [56] | Dalamaga M, Kounatidis D, Tsilingiris D, et al. The role of endocrine disruptors bisphenols and phthalates in obesity: current evidence, perspectives and controversies. Int J Mol Sci, 2024; 25, 675. doi: 10.3390/ijms25010675 |
| [57] | Hatem G, Faria AM, Pinto MB, et al. Association between exposure to airborne endocrine disrupting chemicals and asthma in children or adolescents: a systematic review and meta-analysis. Environ Pollut, 2025; 369, 125830. doi: 10.1016/j.envpol.2025.125830 |
| [58] | Hassen HY, Govarts E, Remy S, et al. Association of environmental pollutants with asthma and allergy, and the mediating role of oxidative stress and immune markers in adolescents. Environ Res, 2025; 265, 120445. doi: 10.1016/j.envres.2024.120445 |
| [59] | Gao Q, Song Y, Jia ZX, et al. Association of exposure to a mixture of phenols, parabens, and phthalates with altered serum thyroid hormone levels and the roles of iodine status and thyroid autoantibody status: a study among American adults. Ecotoxicol Environ Saf, 2024; 282, 116754. doi: 10.1016/j.ecoenv.2024.116754 |
| [60] | Papadopoulos NG, Bacharier LB, Jackson DJ, et al. Type 2 inflammation and asthma in children: a narrative review. J Allergy Clin Immunol Pract, 2024; 12, 2310−24. doi: 10.1016/j.jaip.2024.06.010 |
| [61] | Melén E, Zar HJ, Siroux V, et al. Asthma inception: epidemiologic risk factors and natural history across the life course. Am J Respir Crit Care Med, 2024; 210, 737−54. doi: 10.1164/rccm.202312-2249SO |
| [62] | Maison N, Omony J, Illi S, et al. T2-high asthma phenotypes across lifespan. Eur Respir J, 2022; 60, 2102288. doi: 10.1183/13993003.02288-2021 |
| [63] | Bao CH, Gu LY, Wang S, et al. Priority index for asthma (PIA): in silico discovery of shared and distinct drug targets for adult- and childhood-onset disease. Comput Biol Med, 2023; 162, 107095. doi: 10.1016/j.compbiomed.2023.107095 |
| [64] | Liu S, Jørgensen JT, Ljungman P, et al. Long-term exposure to low-level air pollution and incidence of asthma: the ELAPSE project. Eur Respir J, 2021; 57, 2003099. doi: 10.1183/13993003.030992020 |
| [65] | Wu CS, Zhang YQ, Wei J, et al. Associations of early-life exposure to submicron particulate matter with childhood asthma and wheeze in China. JAMA Netw Open, 2022; 5, e2236003. doi: 10.1001/jamanetworkopen.2022.36003 |
| [66] | Burke M, Childs ML, De La Cuesta B, et al. The contribution of wildfire to PM2.5 trends in the USA. Nature, 2023; 622, 761−6. doi: 10.1038/s41586-023-06522-6 |