[1] |
Wu Y, Wang YY, Bai LL, et al. A narrative review of Clostridioides difficile infection in China. Anaerobe, 2022; 74, 102540. doi: 10.1016/j.anaerobe.2022.102540 |
[2] |
Xiao ZQ, Chen H, Chen H, et al. Advanced diagnostic strategies for Clostridium difficile infection (CDI). J Biomed Nanotechnol, 2019; 15, 1113−4. doi: 10.1166/jbn.2019.2782 |
[3] |
Chen H, Xiao ZQ, Chu Z, et al. Novel detection of norovirus and double clostridium difficile in a closed cartridge system. J Biomed Nanotechnol, 2020; 16, 954−64. doi: 10.1166/jbn.2020.2933 |
[4] |
Kuypers J, Jerome KR. Applications of digital PCR for clinical microbiology. J Clin Microbiol, 2017; 55, 1621−8. doi: 10.1128/JCM.00211-17 |
[5] |
Gerdes L, Iwobi A, Busch U, et al. Optimization of digital droplet polymerase chain reaction for quantification of genetically modified organisms. Biomol Detect Quantif, 2016; 7, 9−20. doi: 10.1016/j.bdq.2015.12.003 |
[6] |
Jia XX, Wang YY, Zhang WZ, et al. A rapid multiplex real-time PCR detection of toxigenic Clostridioides difficile directly from fecal samples. 3 Biotech, 2023; 13, 54. |
[7] |
Jin DZ, Tang YW, Riley TV. Editorial: Clostridium difficile infection in the Asia-Pacific region. Front Cell Infect Microbiol, 2022; 12, 983563. doi: 10.3389/fcimb.2022.983563 |
[8] |
Krutova M, de Meij TGJ, Fitzpatrick F, et al. How to: Clostridioides difficile infection in children. Clin Microbiol Infect, 2022; 28, 1085−90. doi: 10.1016/j.cmi.2022.03.001 |
[9] |
Baek C, Li YG, Yoo HJ, et al. Simple and portable on-site system for nucleic acid-based detection of Clostridium difficile in stool samples using two columns containing microbeads and loop-mediated isothermal amplification. Anal Bioanal Chem, 2022; 414, 613−21. doi: 10.1007/s00216-021-03557-4 |
[10] |
Xu DF, Zhang WF, Li HM, et al. Advances in droplet digital polymerase chain reaction on microfluidic chips. Lab Chip, 2023; 23, 1258−78. doi: 10.1039/D2LC00814A |