[1] Chisholm WP, Lee T, Chirila M. Determination of crystalline silica in dust at low concentrations by low-temperature infrared spectrometry. ASTM. 2013.
[2] Hoy RF, Chambers DC. Silica-related diseases in the modern world. Allergy, 2020; 75, 2805−17. doi:  10.1111/all.14202
[3] Guarnieri G, Salasnich M, Lucernoni P, et al. Silicosis in finishing workers in quartz conglomerates processing. Med Lav, 2020; 111, 99−106.
[4] O'dwyer DN, Ashley SL, Gurczynski SJ, et al. Lung microbiota contribute to pulmonary inflammation and disease progression in pulmonary fibrosis. Am J Respir Crit Care Med, 2019; 199, 1127−38. doi:  10.1164/rccm.201809-1650OC
[5] Barcik W, Boutin RCT, Sokolowska M, et al. The role of lung and gut microbiota in the pathology of asthma. Immunity, 2020; 52, 241−55. doi:  10.1016/j.immuni.2020.01.007
[6] Yang DP, Xing YY, Song XY, et al. The impact of lung microbiota dysbiosis on inflammation. Immunology, 2020; 159, 156−66. doi:  10.1111/imm.13139
[7] Pingle S, Sherekar P, Thakkar L, et al. Goblet, club and alveolar cells: front-line defenders of the airways in chronic obstructive pulmonary disease, a most common lung disease in miners. In: Randive K, Pingle S, Agnihotri A. Medical Geology in Mining: Health Hazards Due to Metal Toxicity. Springer. 2022, 83-100.
[8] Yang DP, Chen X, Wang JJ, et al. Dysregulated lung commensal bacteria drive interleukin-17B production to promote pulmonary fibrosis through their outer membrane vesicles. Immunity, 2019; 50, 692-706. e7.
[9] Jia QY, Wang HW, Wang Y, et al. Investigation of the mechanism of silica-induced pulmonary fibrosis: the role of lung microbiota dysbiosis and the LPS/TLR4 signaling pathway. Sci Total Environ, 2024; 912, 168948. doi:  10.1016/j.scitotenv.2023.168948
[10] Guagliardo R, Pérez-Gil J, De Smedt S, et al. Pulmonary surfactant and drug delivery: focusing on the role of surfactant proteins. J Control Release, 2018; 291, 116−26. doi:  10.1016/j.jconrel.2018.10.012
[11] Hadrioui N, Lemaalem M, Derouiche A, et al. Physical properties of phospholipids and integral proteins and their biofunctional roles in pulmonary surfactant from molecular dynamics simulation. RSC Adv, 2020; 10, 8568−79. doi:  10.1039/D0RA00077A
[12] Martínez-Calle M, Parra-Ortiz E, Cruz A, et al. Towards the molecular mechanism of pulmonary surfactant protein SP-B: at the crossroad of membrane permeability and interfacial lipid transfer. J Mol Biol, 2021; 433, 166749. doi:  10.1016/j.jmb.2020.166749
[13] Su WY, Chen KK, Zhang BZ, et al. The role of surfactant associated protein-a in silicosis. China Occup Med, 2023; 50, 38−45. (In Chinese)
[14] Liu P, Wang SX, Chen L, et al. Changes of Clara cell protein and surfactant protein-D in serum of patients with silicosis. Chin J Ind Hyg Occup Dis, 2007; 25, 18−21. (In Chinese)
[15] Miller BE, Bakewell WE, Katyal SL, et al. Induction of surfactant protein (SP-A) biosynthesis and SP-A mRNA in activated type II cells during acute silicosis in rats. Am J Respir Cell Mol Biol, 1990; 3, 217−26. doi:  10.1165/ajrcmb/3.3.217
[16] Tan SY, Yang S, Chen MK, et al. Lipopolysaccharides promote pulmonary fibrosis in silicosis through the aggravation of apoptosis and inflammation in alveolar macrophages. Open Life Sci, 2020; 15, 598−605. doi:  10.1515/biol-2020-0061
[17] Lakatos HF, Burgess HA, Thatcher TH, et al. Oropharyngeal aspiration of a silica suspension produces a superior model of silicosis in the mouse when compared to intratracheal instillation. Exp Lung Res, 2006; 32, 181−99. doi:  10.1080/01902140600817465
[18] Zhou Q, Guan Y, Hou RY, et al. PolyG mitigates silica-induced pulmonary fibrosis by inhibiting nucleolin and regulating DNA damage repair pathway. Biomed Pharmacother, 2020; 125, 109953. doi:  10.1016/j.biopha.2020.109953
[19] Cooney TP, Thurlbeck WM. The radial alveolar count method of Emery and Mithal: a reappraisal 1--postnatal lung growth. Thorax, 1982; 37, 572-9.
[20] Caretta G, Piontelli E. Isolation of keratinophilic fungi from soil in Pavia, Italy. Sabouraudia, 1975; 13, 33−7. doi:  10.1080/00362177585190061
[21] Fineschi S, Bongiovanni M, Donati Y, et al. In Vivo investigations on anti-fibrotic potential of proteasome inhibition in lung and skin fibrosis. Am J Respir Cell Mol Biol, 2008; 39, 458−65. doi:  10.1165/rcmb.2007-0320OC
[22] Hübner RH, Gitter W, El Mokhtari NE, et al. Standardized quantification of pulmonary fibrosis in histological samples. BioTechniques, 2008; 44, 507−17. doi:  10.2144/000112729
[23] Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol, 2019; 37, 852−57. doi:  10.1038/s41587-019-0209-9
[24] Bokulich NA, Kaehler BD, Rideout JR, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin. Microbiome, 2018; 6, 90. doi:  10.1186/s40168-018-0470-z
[25] Cheng ZN, Zhang YY, Wu SS, et al. Peripheral blood circular RNA hsa_circ_0058493 as a potential novel biomarker for silicosis and idiopathic pulmonary fibrosis. Ecotoxicol Environ Saf, 2022; 236, 113451. doi:  10.1016/j.ecoenv.2022.113451
[26] Zhou Y, Chen L, Sun GF, et al. Alterations in the gut microbiota of patients with silica-induced pulmonary fibrosis. J Occup Med Toxicol, 2019; 14, 5. doi:  10.1186/s12995-019-0225-1
[27] Skalski JH, Limon JJ, Sharma P, et al. Expansion of commensal fungus Wallemia mellicola in the gastrointestinal mycobiota enhances the severity of allergic airway disease in mice. PLoS Pathog, 2018; 14, e1007260. doi:  10.1371/journal.ppat.1007260
[28] Kim MJ, Kim S, Kim H, et al. Reciprocal enhancement of SARS-CoV-2 and influenza virus replication in human pluripotent stem cell-derived lung organoids. Emerg Microbes Infec, 2023; 12, 2211685. doi:  10.1080/22221751.2023.2211685
[29] Ota C, Ng-Blichfeldt JP, korfei M, et al. Dynamic expression of HOPX in alveolar epithelial cells reflects injury and repair during the progression of pulmonary fibrosis. Sci Rep, 2018; 8, 12983. doi:  10.1038/s41598-018-31214-x
[30] Baum L, Arnold TC. Silicosis. StatPearls Publishing. 2023.
[31] Hamilton Jr RF, Thakur SA, Holian A. Silica binding and toxicity in alveolar macrophages. Free Radic Biol Med, 2008; 44, 1246−58. doi:  10.1016/j.freeradbiomed.2007.12.027
[32] Singh I, Beirag N, Kishore U, et al. Surfactant protein D: a therapeutic target for allergic airway diseases. In: Kishore U, Madan T, Sim RB. The Collectin Protein Family and Its Multiple Biological Activities. Springer International Publishing. 2021, 135-45.
[33] Li RM, Li J, Zhou XK. Lung microbiome: new insights into the pathogenesis of respiratory diseases. Signal Transduct Target Ther, 2024; 9, 19. doi:  10.1038/s41392-023-01722-y
[34] Nayak A, Dodagatta-Marri E, Tsolaki AG, et al. An insight into the diverse roles of surfactant proteins, SP-A and SP-D in innate and adaptive immunity. Front Immunol, 2012; 3, 131.
[35] Viviano CJ, Rooney SA. Early increase in expression of surfactant protein A gene in type II cells from silica-treated rats. Am J Physiol, 1997; 273, L395−400.
[36] Natalini JG, Singh S, Segal LN. The dynamic lung microbiome in health and disease. Nat Rev Microbiol, 2023; 21, 222−35. doi:  10.1038/s41579-022-00821-x
[37] Abt MC, Osborne LC, Monticelli LA, et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity, 2012; 37, 158−70. doi:  10.1016/j.immuni.2012.04.011
[38] Remot A, Descamps D, Noordine ML, et al. Bacteria isolated from lung modulate asthma susceptibility in mice. ISME J, 2017; 11, 1061−74. doi:  10.1038/ismej.2016.181
[39] Barfod KK, Lui JC, Hansen SSK, et al. The impact of bacterial exposure in early life on lung surfactant gene expression, function and respiratory rate in germ-free mice. Front Microbiom, 2023; 2, 1085508. doi:  10.3389/frmbi.2023.1085508
[40] Singh N, Vats A, Sharma A, et al. The development of lower respiratory tract microbiome in mice. Microbiome, 2017; 5, 61. doi:  10.1186/s40168-017-0277-3
[41] LI JY, WU G, YANG J, et al. Pulmonary microbiota signatures adjacent to adenocarcinoma, squamous cell carcinoma and benign lesion. Front Oncol, 2023; 13, 1163359. doi:  10.3389/fonc.2023.1163359
[42] Coenye T, Vandamme P, Lipuma JJ. Infection by Ralstonia species in cystic fibrosis patients: identification of R. pickettii and R. mannitolilytica by polymerase chain reaction. Emerg Infect Dis, 2002; 8, 692−6. doi:  10.3201/eid0807.010472
[43] Wang SM, Zhou QX, Tian YZ, et al. The lung microbiota affects pulmonary inflammation and oxidative stress induced by PM2.5 exposure. Environ Sci Technol, 2022; 56, 12368−79. doi:  10.1021/acs.est.1c08888
[44] Tian ZG, Wu EQ, You J, et al. Dynamic alterations in the lung microbiota in a rat model of lipopolysaccharide-induced acute lung injury. Sci Rep, 2022; 12, 4791. doi:  10.1038/s41598-022-08831-8
[45] Crouch E, Persson A, Chang D, et al. Surfactant protein D. increased accumulation in silica-induced pulmonary lipoproteinosis. Am J Pathol, 1991; 139, 765−76.
[46] Liu N, Xue L, Guan Y, et al. Expression of peroxiredoxins and pulmonary surfactant protein a induced by silica in rat lung tissue. Biomed Environ Sci, 2016; 29, 584−8.
[47] Spech RW, Wisniowski P, Kachel DL, et al. Surfactant protein A prevents silica-mediated toxicity to rat alveolar macrophages. Am J Physiol Lung Cell Mol Physiol, 2000; 278, L713−8. doi:  10.1152/ajplung.2000.278.4.L713