[1] |
Azziz R, Carmina E, Chen ZJ, et al. Polycystic ovary syndrome. Nat Rev Dis Primers, 2016; 2, 16057. doi: 10.1038/nrdp.2016.57 |
[2] |
Nieder R, Benbi DK, Reichl FX. Microelements and their role in human health. In: Nieder R, Benbi DK, Reichl FX. Soil Components and Human Health. Springer, 2018; 317–74. |
[3] |
Dutta S, Gorain B, Choudhury H, et al. Environmental and occupational exposure of metals and female reproductive health. Environ Sci Pollut Res, 2022; 29, 62067−92. doi: 10.1007/s11356-021-16581-9 |
[4] |
Liang CM, Zhang ZK, Cao Y, et al. Exposure to multiple toxic metals and polycystic ovary syndrome risk: endocrine disrupting effect from As, Pb and Ba. Sci Total Environ, 2022; 849, 157780. doi: 10.1016/j.scitotenv.2022.157780 |
[5] |
Merlo E, Schereider IRG, Simões MR, et al. Mercury leads to features of polycystic ovary syndrome in rats. Toxicol Lett, 2019; 312, 45−54. doi: 10.1016/j.toxlet.2019.05.006 |
[6] |
Valkenburg O, Uitterlinden AG, Piersma D, et al. Genetic polymorphisms of GnRH and gonadotrophic hormone receptors affect the phenotype of polycystic ovary syndrome. Hum Reprod, 2009; 24, 2014−22. doi: 10.1093/humrep/dep113 |
[7] |
Schmidt J, Brännström M, Landin-Wilhelmsen K, et al. Reproductive hormone levels and anthropometry in postmenopausal women with polycystic ovary syndrome (PCOS): a 21-year follow-up study of women diagnosed with PCOS around 50 years ago and their age-matched controls. J Clin Endocrinol Metab, 2011; 96, 2178−85. doi: 10.1210/jc.2010-2959 |
[8] |
Rami Y, Ebrahimpour K, Maghami M, et al. The association between heavy metals exposure and sex hormones: a systematic review on current evidence. Biol Trace Elem Res, 2022; 200, 3491−510. doi: 10.1007/s12011-021-02947-0 |
[9] |
Wang X, Ding N, Harlow SD, et al. Exposure to heavy metals and hormone levels in midlife women: the Study of Women's Health Across the Nation (SWAN). Environ Pollut, 2023; 317, 120740. doi: 10.1016/j.envpol.2022.120740 |
[10] |
Pollack AZ, Schisterman EF, Goldman LR, et al. Cadmium, lead, and mercury in relation to reproductive hormones and anovulation in premenopausal women. Environ Health Perspect, 2011; 119, 1156−61. doi: 10.1289/ehp.1003284 |
[11] |
Krieg EF Jr. The relationships between blood lead levels and serum follicle stimulating hormone and luteinizing hormone in the third National Health and Nutrition Examination Survey. Environ Res, 2007; 104, 374−82. doi: 10.1016/j.envres.2006.09.009 |
[12] |
Garg D, Tal R. The role of AMH in the pathophysiology of polycystic ovarian syndrome. Reprod Biomed Online, 2016; 33, 15−28. doi: 10.1016/j.rbmo.2016.04.007 |
[13] |
Wiweko B, Maidarti M, Priangga MD, et al. Anti-mullerian hormone as a diagnostic and prognostic tool for PCOS patients. J Assist Reprod Genet, 2014; 31, 1311−6. doi: 10.1007/s10815-014-0300-6 |
[14] |
Eilertsen TB, Vanky E, Carlsen SM. Anti-Mullerian hormone in the diagnosis of polycystic ovary syndrome: can morphologic description be replaced? Hum Reprod, 2012; 27, 2494–502. |
[15] |
Li MS, Zhuang LL, Zhang GH, et al. Association between exposure of light rare earth elements and outcomes of in vitro fertilization-embryo transfer in North China. Sci Total Environ, 2021; 762, 143106. doi: 10.1016/j.scitotenv.2020.143106 |
[16] |
Sun Y, Wang WX, Guo YW, et al. High copper levels in follicular fluid affect follicle development in polycystic ovary syndrome patients: population-based and in vitro studies. Toxicol Appl Pharmacol, 2019; 365, 101−11. doi: 10.1016/j.taap.2019.01.008 |
[17] |
Kanafchian M, Esmaeilzadeh S, Mahjoub S, et al. Status of serum copper, magnesium, and total antioxidant capacity in patients with polycystic ovary syndrome. Biol Trace Elem Res, 2020; 193, 111−7. doi: 10.1007/s12011-019-01705-7 |
[18] |
Zhang CM, Xu L, Zhao Y, et al. Changes in serum heavy metals in polycystic ovary syndrome and their association with endocrine, lipid-metabolism, inflammatory characteristics and pregnancy outcomes. Reprod Toxicol, 2022; 111, 20−6. doi: 10.1016/j.reprotox.2022.05.002 |
[19] |
Kurdoglu Z, Kurdoglu M, Demir H, et al. Serum trace elements and heavy metals in polycystic ovary syndrome. Hum Exp Toxicol, 2012; 31, 452−6. doi: 10.1177/0960327111424299 |
[20] |
Zheng GC, Wang LJ, Guo ZZ, et al. Association of serum heavy metals and trace element concentrations with reproductive hormone levels and polycystic ovary syndrome in a Chinese population. Biol Trace Elem Res, 2015; 167, 1−10. doi: 10.1007/s12011-015-0294-7 |
[21] |
Cook CL, Siow Y, Brenner AG, et al. Relationship between serum müllerian-inhibiting substance and other reproductive hormones in untreated women with polycystic ovary syndrome and normal women. Fertil Steril, 2002; 77, 141−6. doi: 10.1016/S0015-0282(01)02944-2 |
[22] |
Pigny P, Jonard S, Robert Y, et al. Serum anti-Mullerian hormone as a surrogate for antral follicle count for definition of the polycystic ovary syndrome. J Clin Endocrinol Metab, 2006; 91, 941−5. doi: 10.1210/jc.2005-2076 |
[23] |
Sharma P, Gupta V, Kumar K, et al. Assessment of serum elements concentration and polycystic ovary syndrome (PCOS): systematic review and meta-analysis. Biol Trace Elem Res, 2022; 200, 4582−93. doi: 10.1007/s12011-021-03058-6 |
[24] |
Zuo T, Zhu MH, Xu WM. Roles of oxidative stress in polycystic ovary syndrome and cancers. Oxid Med Cell Longev, 2016; 2016, 8589318. doi: 10.1155/2016/8589318 |
[25] |
Yin JC, Hong X, Ma J, et al. Serum trace elements in patients with polycystic ovary syndrome: a systematic review and meta-analysis. Front Endocrinol, 2020; 11, 572384. doi: 10.3389/fendo.2020.572384 |
[26] |
Zhang LH, Luo Z, Song YF, et al. Effects and mechanisms of waterborne copper exposure influencing ovary development and related hormones secretion in yellow catfish Pelteobagrus fulvidraco. Aquat Toxicol, 2016; 178, 88−98. doi: 10.1016/j.aquatox.2016.07.014 |
[27] |
Michaluk A, Kochman K. Involvement of copper in female reproduction. Reprod Biol, 2007; 7, 193−205. |
[28] |
Kochman K, Blitek A, Kaczmarek M, et al. Different signaling in pig anterior pituitary cells by GnRH and its complexes with copper and nickel. Neuro Endocrinol Lett, 2005; 26, 377−82. |
[29] |
Roychoudhury S, Nath S, Massanyi P, et al. Copper-induced changes in reproductive functions: in vivo and in vitro effects. Physiol Res, 2016; 65, 11−22. |
[30] |
Streuli I, Fraisse T, Chapron C, et al. Clinical uses of anti-Müllerian hormone assays: pitfalls and promises. Fertil Steril, 2009; 91, 226−30. doi: 10.1016/j.fertnstert.2007.10.067 |
[31] |
Cimino I, Casoni F, Liu XH, et al. Novel role for anti-Müllerian hormone in the regulation of GnRH neuron excitability and hormone secretion. Nat Commun, 2016; 7, 10055. doi: 10.1038/ncomms10055 |
[32] |
Dewailly D, Robin G, Peigne M, et al. Interactions between androgens, FSH, anti-Müllerian hormone and estradiol during folliculogenesis in the human normal and polycystic ovary. Hum Reprod Update, 2016; 22, 709−24. doi: 10.1093/humupd/dmw027 |
[33] |
Stener-Victorin E, Deng QL. Epigenetic inheritance of polycystic ovary syndrome—challenges and opportunities for treatment. Nat Rev Endocrinol, 2021; 17, 521−33. doi: 10.1038/s41574-021-00517-x |