[1] |
The Polaris Observatory Collaborators. Global prevalence, treatment, and prevention of hepatitis B virus infection in 2016: a modelling study. Lancet Gastroenterol Hepatol, 2018; 3, 383−403. doi: 10.1016/S2468-1253(18)30056-6 |
[2] |
Wang H, Men P, Xiao Y, et al. Hepatitis B infection in the general population of China: a systematic review and meta-analysis. BMC Infect Dis, 2019; 19, 811. doi: 10.1186/s12879-019-4428-y |
[3] |
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021; 71, 209−49. doi: 10.3322/caac.21660 |
[4] |
Yang JD, Hainaut P, Gores GJ, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol, 2019; 16, 589−604. doi: 10.1038/s41575-019-0186-y |
[5] |
Martinez MG, Villeret F, Testoni B, et al. Can we cure hepatitis B virus with novel direct-acting antivirals? Liver Int, 2020; 40 Suppl 1, 27–34. |
[6] |
Cornberg M, Lok AS, Terrault NA, et al. 2019 EASL-AASLD HBV Treatment Endpoints Conference Faculty. Guidance for design and endpoints of clinical trials in chronic hepatitis B - Report from the 2019 EASL-AASLD HBV Treatment Endpoints Conference. J Hepatol, 2020; 72, 539−57. doi: 10.1016/j.jhep.2019.11.003 |
[7] |
Choi HSJ, Van Campenhout MJH, Van Vuuren AJ, et al. Ultra-Long-term Follow-up of Interferon Alfa Treatment for HBeAg-positive chronic hepatitis B virus infection. Clin Gastroenterol Hepatol, 2021; 19, 1933-1940. e1. |
[8] |
Yeo YH, Ho HJ, Yang HI, et al. Factors associated with rates of HBsAg Seroclearance in adults with chronic HBV infection: a systematic review and meta-analysis. Gastroenterology, 2019; 156, 635-46. e9. |
[9] |
Ye J, Chen J. Interferon and hepatitis B: current and future perspectives. Front Immunol, 2021; 12, 733364. doi: 10.3389/fimmu.2021.733364 |
[10] |
Marcellin P, Ahn SH, Ma X, et al. Combination of tenofovir disoproxil fumarate and peginterferon α-2a increases loss of hepatitis B surface antigen in patients with chronic hepatitis B. Gastroenterology, 2016; 150, 134-44. e10. |
[11] |
Li MH, Zhang L, Lu Y, et al. Early serum HBsAg kinetics as predictor of HBsAg loss in patients with HBeAg-negative chronic hepatitis B after treatment with pegylated interferonα-2a. Virol Sin, 2021; 36, 311−20. doi: 10.1007/s12250-020-00290-7 |
[12] |
Li MH, Zhang L, Qu XJ, et al. Kinetics of hepatitis B surface antigen level in chronic hepatitis B patients who achieved hepatitis B surface antigen loss during pegylated interferon alpha-2a treatment. Chin Med J (Engl), 2017; 130, 559−65. doi: 10.4103/0366-6999.200554 |
[13] |
Li M, Sun F, Bi X, et al. Consolidation treatment needed for sustained HBsAg-negative response induced by interferon-alpha in HBeAg positive chronic hepatitis B patients. Virol Sin, 2022; 37, 390−7. doi: 10.1016/j.virs.2022.03.001 |
[14] |
Pan CQ, Li MH, Yi W, et al. Outcome of Chinese patients with hepatitis B at 96 weeks after functional cure with IFN versus combination regimens. Liver Int, 2021; 41, 1498−508. doi: 10.1111/liv.14801 |
[15] |
Li M, Xie S, Bi X, et al. An optimized mode of interferon intermittent therapy help improve HBsAg disappearance in chronic hepatitis B patients. Front Microbiol, 2022; 13, 960589. doi: 10.3389/fmicb.2022.960589 |
[16] |
Collin M, Bigley V. Human dendritic cell subsets: an update. Immunology, 2018; 154, 3−20. doi: 10.1111/imm.12888 |
[17] |
Balan S, Saxena M, Bhardwaj N. Dendritic cell subsets and locations. Int Rev Cell Mol Biol, 2019; 348, 1−68. |
[18] |
Wang G, Duan Z. Guidelines for prevention and treatment of chronic hepatitis B. J Clin Transl Hepatol, 2021; 9, 769−91. |
[19] |
Park LM, Lannigan J, Jaimes MC. OMIP-069: Forty-color full spectrum flow cytometry panel for deep immunophenotyping of major cell subsets in human peripheral blood. Cytometry A, 2020; 97, 1044−51. doi: 10.1002/cyto.a.24213 |
[20] |
Lee IC, Yang SS, Lee CJ, et al. Incidence and predictors of HBsAg loss after peginterferon therapy in HBeAg-negative chronic hepatitis B: a multicenter, long-term follow-up study. J Infect Dis, 2018; 218, 1075−84. doi: 10.1093/infdis/jiy272 |
[21] |
Lin YJ, Sun FF, Zeng Z, et al. Combination and intermittent therapy based on pegylated interferon alfa-2a for chronic hepatitis B with nucleoside (nucleotide) analog-experienced resulting in hepatitis B surface antigen clearance: a case report. Viral Immunol, 2022; 35, 71−75. doi: 10.1089/vim.2021.0112 |
[22] |
MacDonald KP, Munster DJ, Clark GJ, et al. Characterization of human blood dendritic cell subsets. Blood, 2002; 100, 4512−20. doi: 10.1182/blood-2001-11-0097 |
[23] |
Bamboat ZM, Stableford JA, Plitas G, et al. Human liver dendritic cells promote T cell hyporesponsiveness. J Immunol, 2009; 182, 1901−11. doi: 10.4049/jimmunol.0803404 |
[24] |
Piccioli D, Tavarini S, Borgogni E, et al. Functional specialization of human circulating CD16 and CD1c myeloid dendritic-cell subsets. Blood, 2007; 109, 5371−9. doi: 10.1182/blood-2006-08-038422 |
[25] |
Schäkel K, Kannagi R, Kniep B, et al. 6-Sulfo LacNAc, a novel carbohydrate modification of PSGL-1, defines an inflammatory type of human dendritic cells. Immunity, 2002; 17, 289−301. doi: 10.1016/S1074-7613(02)00393-X |
[26] |
De Baey A, Mende I, Baretton G, et al. A subset of human dendritic cells in the T cell area of mucosa-associated lymphoid tissue with a high potential to produce TNF-alpha. J Immunol, 2003; 170, 5089−94. doi: 10.4049/jimmunol.170.10.5089 |
[27] |
Kunze A, Förster U, Oehrl S, Schmitz M, Schäkel K. Autocrine TNF-α and IL-1β prime 6-sulfo LacNAc(+) dendritic cells for high-level production of IL-23. Exp Dermatol, 2017; 26, 314−6. doi: 10.1111/exd.13134 |
[28] |
Poltorak MP, Zielinski CE. Hierarchical governance of cytokine production by 6-sulfo LacNAc (slan) dendritic cells for the control of psoriasis pathogenesis. Exp Dermatol, 2017; 26, 317−8. doi: 10.1111/exd.13170 |
[29] |
Schäkel K, Von Kietzell M, Hänsel A, et al. Human 6-sulfo LacNAc-expressing dendritic cells are principal producers of early interleukin-12 and are controlled by erythrocytes. Immunity, 2006; 24, 767−77. doi: 10.1016/j.immuni.2006.03.020 |
[30] |
Wehner R, Löbel B, Bornhäuser M, et al. Reciprocal activating interaction between 6-sulfoLacNAc+ dendritic cells and NK cells. Int J Cancer, 2009; 124, 358−66. doi: 10.1002/ijc.23962 |
[31] |
Schmitz M, Zhao S, Deuse Y, et al. Tumoricidal potential of native blood dendritic cells: direct tumor cell killing and activation of NK cell-mediated cytotoxicity. J Immunol, 2005; 174, 4127−34. doi: 10.4049/jimmunol.174.7.4127 |
[32] |
Costantini C, Calzetti F, Perbellini O, et al. Human neutrophils interact with both 6-sulfo LacNAc+ DC and NK cells to amplify NK-derived IFN{gamma}: role of CD18, ICAM-1, and ICAM-3. Blood, 2011; 117, 1677−86. doi: 10.1182/blood-2010-06-287243 |
[33] |
Prazma CM, Tedder TF. Dendritic cell CD83: a therapeutic target or innocent bystander? Immunol Lett, 2008; 115, 1-8. |
[34] |
Tze LE, Horikawa K, Domaschenz H, et al. CD83 increases MHC II and CD86 on dendritic cells by opposing IL-10-driven MARCH1-mediated ubiquitination and degradation. J Exp Med, 2011; 208, 149−65. doi: 10.1084/jem.20092203 |
[35] |
Li M, Zhang L, Xie S, et al. Dynamic changes of cytokine profiles and virological markers associated with HBsAg loss during peginterferon alpha-2a treatment in HBeAg-positive chronic hepatitis B patients. Front Immunol, 2022; 13, 892031. doi: 10.3389/fimmu.2022.892031 |