[1] The Polaris Observatory Collaborators. Global prevalence, treatment, and prevention of hepatitis B virus infection in 2016: a modelling study. Lancet Gastroenterol Hepatol, 2018; 3, 383−403. doi:  10.1016/S2468-1253(18)30056-6
[2] Wang H, Men P, Xiao Y, et al. Hepatitis B infection in the general population of China: a systematic review and meta-analysis. BMC Infect Dis, 2019; 19, 811. doi:  10.1186/s12879-019-4428-y
[3] Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021; 71, 209−49. doi:  10.3322/caac.21660
[4] Yang JD, Hainaut P, Gores GJ, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol, 2019; 16, 589−604. doi:  10.1038/s41575-019-0186-y
[5] Martinez MG, Villeret F, Testoni B, et al. Can we cure hepatitis B virus with novel direct-acting antivirals? Liver Int, 2020; 40 Suppl 1, 27–34.
[6] Cornberg M, Lok AS, Terrault NA, et al. 2019 EASL-AASLD HBV Treatment Endpoints Conference Faculty. Guidance for design and endpoints of clinical trials in chronic hepatitis B - Report from the 2019 EASL-AASLD HBV Treatment Endpoints Conference. J Hepatol, 2020; 72, 539−57. doi:  10.1016/j.jhep.2019.11.003
[7] Choi HSJ, Van Campenhout MJH, Van Vuuren AJ, et al. Ultra-Long-term Follow-up of Interferon Alfa Treatment for HBeAg-positive chronic hepatitis B virus infection. Clin Gastroenterol Hepatol, 2021; 19, 1933-1940. e1.
[8] Yeo YH, Ho HJ, Yang HI, et al. Factors associated with rates of HBsAg Seroclearance in adults with chronic HBV infection: a systematic review and meta-analysis. Gastroenterology, 2019; 156, 635-46. e9.
[9] Ye J, Chen J. Interferon and hepatitis B: current and future perspectives. Front Immunol, 2021; 12, 733364. doi:  10.3389/fimmu.2021.733364
[10] Marcellin P, Ahn SH, Ma X, et al. Combination of tenofovir disoproxil fumarate and peginterferon α-2a increases loss of hepatitis B surface antigen in patients with chronic hepatitis B. Gastroenterology, 2016; 150, 134-44. e10.
[11] Li MH, Zhang L, Lu Y, et al. Early serum HBsAg kinetics as predictor of HBsAg loss in patients with HBeAg-negative chronic hepatitis B after treatment with pegylated interferonα-2a. Virol Sin, 2021; 36, 311−20. doi:  10.1007/s12250-020-00290-7
[12] Li MH, Zhang L, Qu XJ, et al. Kinetics of hepatitis B surface antigen level in chronic hepatitis B patients who achieved hepatitis B surface antigen loss during pegylated interferon alpha-2a treatment. Chin Med J (Engl), 2017; 130, 559−65. doi:  10.4103/0366-6999.200554
[13] Li M, Sun F, Bi X, et al. Consolidation treatment needed for sustained HBsAg-negative response induced by interferon-alpha in HBeAg positive chronic hepatitis B patients. Virol Sin, 2022; 37, 390−7. doi:  10.1016/j.virs.2022.03.001
[14] Pan CQ, Li MH, Yi W, et al. Outcome of Chinese patients with hepatitis B at 96 weeks after functional cure with IFN versus combination regimens. Liver Int, 2021; 41, 1498−508. doi:  10.1111/liv.14801
[15] Li M, Xie S, Bi X, et al. An optimized mode of interferon intermittent therapy help improve HBsAg disappearance in chronic hepatitis B patients. Front Microbiol, 2022; 13, 960589. doi:  10.3389/fmicb.2022.960589
[16] Collin M, Bigley V. Human dendritic cell subsets: an update. Immunology, 2018; 154, 3−20. doi:  10.1111/imm.12888
[17] Balan S, Saxena M, Bhardwaj N. Dendritic cell subsets and locations. Int Rev Cell Mol Biol, 2019; 348, 1−68.
[18] Wang G, Duan Z. Guidelines for prevention and treatment of chronic hepatitis B. J Clin Transl Hepatol, 2021; 9, 769−91.
[19] Park LM, Lannigan J, Jaimes MC. OMIP-069: Forty-color full spectrum flow cytometry panel for deep immunophenotyping of major cell subsets in human peripheral blood. Cytometry A, 2020; 97, 1044−51. doi:  10.1002/cyto.a.24213
[20] Lee IC, Yang SS, Lee CJ, et al. Incidence and predictors of HBsAg loss after peginterferon therapy in HBeAg-negative chronic hepatitis B: a multicenter, long-term follow-up study. J Infect Dis, 2018; 218, 1075−84. doi:  10.1093/infdis/jiy272
[21] Lin YJ, Sun FF, Zeng Z, et al. Combination and intermittent therapy based on pegylated interferon alfa-2a for chronic hepatitis B with nucleoside (nucleotide) analog-experienced resulting in hepatitis B surface antigen clearance: a case report. Viral Immunol, 2022; 35, 71−75. doi:  10.1089/vim.2021.0112
[22] MacDonald KP, Munster DJ, Clark GJ, et al. Characterization of human blood dendritic cell subsets. Blood, 2002; 100, 4512−20. doi:  10.1182/blood-2001-11-0097
[23] Bamboat ZM, Stableford JA, Plitas G, et al. Human liver dendritic cells promote T cell hyporesponsiveness. J Immunol, 2009; 182, 1901−11. doi:  10.4049/jimmunol.0803404
[24] Piccioli D, Tavarini S, Borgogni E, et al. Functional specialization of human circulating CD16 and CD1c myeloid dendritic-cell subsets. Blood, 2007; 109, 5371−9. doi:  10.1182/blood-2006-08-038422
[25] Schäkel K, Kannagi R, Kniep B, et al. 6-Sulfo LacNAc, a novel carbohydrate modification of PSGL-1, defines an inflammatory type of human dendritic cells. Immunity, 2002; 17, 289−301. doi:  10.1016/S1074-7613(02)00393-X
[26] De Baey A, Mende I, Baretton G, et al. A subset of human dendritic cells in the T cell area of mucosa-associated lymphoid tissue with a high potential to produce TNF-alpha. J Immunol, 2003; 170, 5089−94. doi:  10.4049/jimmunol.170.10.5089
[27] Kunze A, Förster U, Oehrl S, Schmitz M, Schäkel K. Autocrine TNF-α and IL-1β prime 6-sulfo LacNAc(+) dendritic cells for high-level production of IL-23. Exp Dermatol, 2017; 26, 314−6. doi:  10.1111/exd.13134
[28] Poltorak MP, Zielinski CE. Hierarchical governance of cytokine production by 6-sulfo LacNAc (slan) dendritic cells for the control of psoriasis pathogenesis. Exp Dermatol, 2017; 26, 317−8. doi:  10.1111/exd.13170
[29] Schäkel K, Von Kietzell M, Hänsel A, et al. Human 6-sulfo LacNAc-expressing dendritic cells are principal producers of early interleukin-12 and are controlled by erythrocytes. Immunity, 2006; 24, 767−77. doi:  10.1016/j.immuni.2006.03.020
[30] Wehner R, Löbel B, Bornhäuser M, et al. Reciprocal activating interaction between 6-sulfoLacNAc+ dendritic cells and NK cells. Int J Cancer, 2009; 124, 358−66. doi:  10.1002/ijc.23962
[31] Schmitz M, Zhao S, Deuse Y, et al. Tumoricidal potential of native blood dendritic cells: direct tumor cell killing and activation of NK cell-mediated cytotoxicity. J Immunol, 2005; 174, 4127−34. doi:  10.4049/jimmunol.174.7.4127
[32] Costantini C, Calzetti F, Perbellini O, et al. Human neutrophils interact with both 6-sulfo LacNAc+ DC and NK cells to amplify NK-derived IFN{gamma}: role of CD18, ICAM-1, and ICAM-3. Blood, 2011; 117, 1677−86. doi:  10.1182/blood-2010-06-287243
[33] Prazma CM, Tedder TF. Dendritic cell CD83: a therapeutic target or innocent bystander? Immunol Lett, 2008; 115, 1-8.
[34] Tze LE, Horikawa K, Domaschenz H, et al. CD83 increases MHC II and CD86 on dendritic cells by opposing IL-10-driven MARCH1-mediated ubiquitination and degradation. J Exp Med, 2011; 208, 149−65. doi:  10.1084/jem.20092203
[35] Li M, Zhang L, Xie S, et al. Dynamic changes of cytokine profiles and virological markers associated with HBsAg loss during peginterferon alpha-2a treatment in HBeAg-positive chronic hepatitis B patients. Front Immunol, 2022; 13, 892031. doi:  10.3389/fimmu.2022.892031