| [1] | Al-Kindi SG, Brook RD, Biswal S, et al. Environmental determinants of cardiovascular disease: lessons learned from air pollution. Nat Rev Cardiol, 2020; 17, 656−72. doi: 10.1038/s41569-020-0371-2 |
| [2] | Rajagopalan S, Al-Kindi SG, Brook RD. Air pollution and cardiovascular disease: JACC state-of-the-art review. J Am Coll Cardiol, 2018; 72, 2054−70. doi: 10.1016/j.jacc.2018.07.099 |
| [3] | Zheng CY, Wu JM, Tang HS, et al. Relationship of ambient humidity with cardiovascular diseases: A prospective study of 24, 510 adults in a general population. Biomed Environ Sci, 2024; 37, 1352−61. |
| [4] | Li J, Woodward A, Hou XY, et al. Modification of the effects of air pollutants on mortality by temperature: a systematic review and meta-analysis. Sci Total Environ, 2017; 575, 1556−70. doi: 10.1016/j.scitotenv.2016.10.070 |
| [5] | Hebbern C, Cakmak S. Synoptic weather types and aeroallergens modify the effect of air pollution on hospitalisations for asthma hospitalisations in Canadian cities. Environ Pollut, 2015; 204, 9−16. doi: 10.1016/j.envpol.2015.04.010 |
| [6] | Mazenq J, Dubus JC, Gaudart J, et al. Air pollution and children’s asthma-related emergency hospital visits in southeastern France. Eur J Pediatr, 2017; 176, 705−11. doi: 10.1007/s00431-017-2900-5 |
| [7] | Makra L, Puskás J, Matyasovszky I, et al. Weather elements, chemical air pollutants and airborne pollen influencing asthma emergency room visits in Szeged, Hungary: performance of two objective weather classifications. Int J Biometeorol, 2015; 59, 1269−89. doi: 10.1007/s00484-014-0938-x |
| [8] | Anenberg SC, Haines S, Wang E, et al. Synergistic health effects of air pollution, temperature, and pollen exposure: a systematic review of epidemiological evidence. Environ Health, 2020; 19, 130. doi: 10.1186/s12940-020-00681-z |
| [9] | Alahmad B, Khraishah H, Royé D, et al. Associations between extreme temperatures and cardiovascular cause-specific mortality: results from 27 countries. Circulation, 2023; 147, 35−46. doi: 10.1161/CIRCULATIONAHA.122.061832 |
| [10] | Guo QC, He ZF, Wang ZS. Monthly climate prediction using deep convolutional neural network and long short-term memory. Sci Rep, 2024; 14, 17748. doi: 10.1038/s41598-024-68906-6 |
| [11] | Van Houdt G, Mosquera C, Nápoles G. A review on the long short-term memory model. Artif Intell Rev, 2020; 53, 5929−55. doi: 10.1007/s10462-020-09838-1 |
| [12] | Guo QC, He ZF, Wang ZS. Assessing the effectiveness of long short-term memory and artificial neural network in predicting daily ozone concentrations in Liaocheng City. Sci Rep, 2025; 15, 6798. doi: 10.1038/s41598-025-91329-w |
| [13] | Kim Y, Oka K, Kawazu EC, et al. Enhancing health resilience in Japan in a changing climate. Lancet Reg Health West Pac, 2023; 40, 100970. |
| [14] | Ma TJ, Chen W. Climate variability of the East Asian winter monsoon and associated extratropical–tropical interaction: A review. Ann N Y Acad Sci, 2021; 1504, 44−62. doi: 10.1111/nyas.14620 |
| [15] | Pan R, Okada A, Yamana H, et al. Association between ambient temperature and cause-specific cardiovascular disease admissions in Japan: a nationwide study. Environ Res, 2023; 225, 115610. doi: 10.1016/j.envres.2023.115610 |
| [16] | Kaihara T, Yoneyama K, Nakai M, et al. Association of PM2.5 exposure with hospitalization for cardiovascular disease in elderly individuals in Japan. Sci Rep, 2021; 11, 9897. doi: 10.1038/s41598-021-89290-5 |
| [17] | Ishii M, Seki T, Kaikita K, et al. Association of short-term exposure to air pollution with myocardial infarction with and without obstructive coronary artery disease. Eur J Prev Cardiol, 2021; 28, 1435−44. doi: 10.1177/2047487320904641 |
| [18] | Gasparrini A, Guo YM, Hashizume M, et al. Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet, 2015; 386, 369−75. doi: 10.1016/S0140-6736(14)62114-0 |
| [19] | Li WX, Wang XD, Bi B, et al. Influence of temperature and humidity on the incidence of pulmonary tuberculosis in Hainan, China, 2004-2018. Biomed Environ Sci, 2024; 37, 1080−5. |
| [20] | Zhao Q, Guo YM, Ye TT, et al. Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: a three-stage modelling study. Lancet Planet Health, 2021; 5, e415−25. doi: 10.1016/S2542-5196(21)00081-4 |
| [21] | Bunker A, Wildenhain J, Vandenbergh A, et al. Effects of air temperature on climate-sensitive mortality and morbidity outcomes in the elderly; a systematic review and meta-analysis of epidemiological evidence. EBioMedicine, 2016; 6, 258−68. doi: 10.1016/j.ebiom.2016.02.034 |
| [22] | Xu RJ, Huang SL, Shi CX, et al. Extreme temperature events, fine particulate matter, and myocardial infarction mortality. Circulation, 2023; 148, 312−23. doi: 10.1161/CIRCULATIONAHA.122.063504 |
| [23] | Amsalu E, Guo YM, Li HB, et al. Short-term effect of ambient sulfur dioxide (SO2) on cause-specific cardiovascular hospital admission in Beijing, China: A time series study. Atmos Environ, 2019; 208, 74−81. doi: 10.1016/j.atmosenv.2019.03.015 |
| [24] | Zanobetti A, O’Neill MS. Longer-term outdoor temperatures and health effects: a review. Curr Epidemiol Rep, 2018; 5, 125−39. doi: 10.1007/s40471-018-0150-3 |
| [25] | Dominici F, Peng RD, Bell ML, et al. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA, 2006; 295, 1127−34. doi: 10.1001/jama.295.10.1127 |
| [26] | Brook RD, Rajagopalan S, Pope III CA, et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation, 2010; 121, 2331−78. doi: 10.1161/CIR.0b013e3181dbece1 |
| [27] | Wang GF, Zhang YZ, Yang HY, et al. Impact of air pollutants on lung function and inflammatory response in Asthma in Shanghai. Biomed Environ Sci, 2024; 37, 811−22. |
| [28] | Pope III CA, Bhatnagar A, McCracken JP, et al. Exposure to fine particulate air pollution is associated with endothelial injury and systemic inflammation. Circ Res, 2016; 119, 1204−14. doi: 10.1161/CIRCRESAHA.116.309279 |
| [29] | Pope III CA, Coleman N, Pond ZA, et al. Fine particulate air pollution and human mortality: 25+ years of cohort studies. Environ Res, 2020; 183, 108924. doi: 10.1016/j.envres.2019.108924 |
| [30] | Schraufnagel DE, Balmes JR, Cowl CT, et al. Air pollution and noncommunicable diseases: a review by the forum of international respiratory societies’ environmental committee, part 2: air pollution and organ systems. Chest, 2019; 155, 417−26. doi: 10.1016/j.chest.2018.10.041 |
| [31] | Tran L, Bonti A, Chi LH, et al. Advanced calibration of mortality prediction on cardiovascular disease using feature-based artificial neural network. Expert Syst Appl, 2022; 203, 117393. doi: 10.1016/j.eswa.2022.117393 |
| [32] | Amarbayasgalan T, Lee JY, Kim KR, et al. Deep autoencoder based neural networks for coronary heart disease risk prediction. In: Proceedings of the VLDB Workshop on Heterogeneous Data Management, Polystores, and Analytics for Healthcare. Springer. 2019, 237-248. |
| [33] | Mienye ID, Sun YX, Wang ZH. Improved sparse autoencoder based artificial neural network approach for prediction of heart disease. Inform Med Unlocked, 2020; 18, 100307. doi: 10.1016/j.imu.2020.100307 |